Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Orthogonal Projections

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Orthogonal Sets:

A set of vectors \left \{ u_1, u_2, ... u_p \right \}    in \mathbb{R^n}     is called orthogonal set, if u_i \cdot u_j =0    . if i \neq j

Orthogonal Basis

An orthogonal basis for a subspace W of \mathbb{R^n}     is a basis for W that is also an orthogonal set.

Let S = \left \{ u_1, u_2, ... u_p \right \}     be the orthogonal basis for a W of \mathbb{R^n}     is a basis for W that is also a orthogonal set. We need to calculate c_1, c_2, ... c_p     such that :

y = c_1 u_1 + c_2 u_2 + ... c_p u_p

Let’s take the dot product of u_1 both side.

y \cdot u_1 = (c_1 u_1 + c_2 u_2 + ... c_p u_p) \cdot u_1

y \cdot u_1 = c_1 (u_1 \cdot u_1) + c_2 (u_2 \cdot u_1) + ... c_p (u_p \cdot u_1)

Since, this is orthogonal basis u_2 \cdot u_1 = u_3 \cdot u_1 = ... =  u_p \cdot u_1 =0    . This gives c_1    :

c_1 = \frac{y \cdot u_1}{ u_1 \cdot u_1}

We can generalize the above equation

c_j = \frac{y \cdot u_j}{ u_j \cdot u_j}

Orthogonal Projections

Suppose {u_1, u_2,… u_n} is an orthogonal basis for W in \mathbb{R^n}    . For each y in W:

y =\left ( \frac{y \cdot u_1}{u_1 \cdot u_1} \right ) u_1 + ... +  \left ( \frac{y \cdot u_p}{u_p \cdot u_p } \right )u_p

Let’s take \left \{ u_1, u_2, u_3  \right \}     is an orthogonal basis for \mathbb{R^3}     and W = span \left \{ u_1, u_2 \right \}    . Let’s try to write a write y in the form \hat{y}     belongs to W space, and z that is orthogonal to W.

y =\left ( \frac{y \cdot u_1}{u_1 \cdot u_1} \right ) u_1  +  \left ( \frac{y \cdot u_2}{u_2\cdot u_2 } \right )u_2 + \left ( \frac{y \cdot u_3}{u_3 \cdot u_3} \right ) u_3  \\

where 

\hat{y} = \left ( \frac{y \cdot u_1}{u_1 \cdot u_1} \right ) u_1  +  \left ( \frac{y \cdot u_2}{u_2\cdot u_2 } \right )u_2

and

z = \left ( \frac{y \cdot u_3}{u_3 \cdot u_3} \right ) u_3     [Tex]y= \hat{y} + z[/Tex]

Now, we can see that z is orthogonal to both u_1     and u_2     such that:

z \cdot u_1 =0 \\ z \cdot u_2 =0

Orthogonal Decomposition Theorem:

Let W be the subspace of \mathbb{R^n}    . Then each y in \mathbb{R^n}     can be uniquely represented in the form:

y = \hat{y} + z

where \hat{y}    is in W and z in W^{\perp}. If \left \{ u_1, u_2, ... u_p \right \}      is an orthogonal basis of W. then,

\hat{y} =\left ( \frac{y \cdot u_1}{u_1 \cdot u_1} \right ) u_1 + ... +  \left ( \frac{y \cdot u_p}{u_p \cdot u_p } \right )u_p

thus:

z = y - \hat{y}

Then, \hat{y}    is the orthogonal projection of y in W.

Best Approximation Theorem 

Let W is the subspace of \mathbb{R^n}    , y any vector in \mathbb{R^n}    . Let v in W and different from \hat{y}     . Then \left \| v-\hat{y} \right \|     also in W.

z = y - \hat{y}     is orthogonal to W, and also orthogonal to v=\hat{y}    .  Then y-v  can be written as:

y-v =  (y- \hat{y}) + (\hat{y} -v)

Thus:

\left \| y-v \right \|^{2} = \left \| y- \hat{y} \right \|^{2} + \left \| \hat{y}-v \right \|^{2}

Thus, this can be written as:

\left \| y-v \right \|^{2} > \left \| y- \hat{y} \right \|^{2}

and

\left \| y-v \right \| > \left \| y- \hat{y} \right \|

References:


My Personal Notes arrow_drop_up
Last Updated : 16 Oct, 2021
Like Article
Save Article
Related Tutorials