# Online Queries for GCD of array after divide operations

You are given an array of N integer values and M update operations. An update consists of choosing an element of the array and dividing it by a given value. It is guaranteed that the element is divisible by the chosen value. After each update, you should compute the greatest common divisor of all the elements of the array.

Examples:

```Input : 3 3
36 24 72
1 3
3 12
2 4
Output :12
6
6
After each operation the array values will be:
1. 12, 24, 72
2. 12, 24, 6
3. 12, 6, 6

Input :5 6
100 150 200 600 300
4 6
2 3
4 4
1 4
2 5
5 25
Output : 50
50
25
25
5
1
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach
First, you should compute the Greatest Common Divisor(gcd) of all the initial numbers. Because the queries consist of dividing a number to one of its divisors it means the after each query the new gcd is a divisor of the old gcd. So for each query, you should simply compute the gcd between the updated value and the previous gcd.

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `void` `print_gcd_online(``int` `n, ``int` `m, ` `                      ``int` `query[], ``int` `arr[]) ` `{ ` `    ``// stores the gcd of the initial array elements ` `    ``int` `max_gcd = 0; ` `    ``int` `i = 0; ` ` `  `    ``// calculates the gcd ` `    ``for` `(i = 0; i < n; i++) ` `        ``max_gcd = __gcd(max_gcd, arr[i]); ` ` `  `    ``// performing online queries ` `    ``for` `(i = 0; i < m; i++) ` `    ``{ ` `        ``// index is 1 based ` `        ``query[i]--; ` ` `  `        ``// divide the array element ` `        ``arr[query[i]] /= query[i]; ` ` `  `        ``// calculates the current gcd ` `        ``max_gcd = __gcd(arr[query[i]], max_gcd); ` ` `  `        ``// print the gcd after each step ` `        ``cout << max_gcd << endl; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 3; ` `    ``int` `m = 3; ` `    ``int` `query[m]; ` `    ``int` `arr[] = {36, 24, 72}; ` `    ``query = 1; ` `    ``query = 3; ` `    ``query = 3; ` `    ``query = 12; ` `    ``query = 2; ` `    ``query = 4; ` ` `  `    ``print_gcd_online(n, m, query, arr); ` `    ``return` `0; ` `} ` ` `  `// This code is contributed by ` `// sanjeev2552 `

## Java

 `// Java implementation of the approach ` ` `  `class` `GFG { ` ` `  `    ``// returns the gcd after all updates ` `    ``// in the array ` `    ``static` `int` `gcd(``int` `a, ``int` `b) ` `    ``{ ` `        ``if` `(a == ``0``) ` `            ``return` `b; ` ` `  `        ``return` `gcd(b % a, a); ` `    ``} ` ` `  `    ``static` `void` `print_gcd_online(``int` `n, ``int` `m,  ` `                    ``int``[][] query, ``int``[] arr) ` `    ``{ ` ` `  `        ``// stores the gcd of the initial array elements ` `        ``int` `max_gcd = ``0``;  ` ` `  `        ``int` `i = ``0``; ` `        ``for` `(i = ``0``; i < n; i++) ``// calculates the gcd ` `            ``max_gcd = gcd(max_gcd, arr[i]); ` ` `  `        ``// performing online queries ` `        ``for` `(i = ``0``; i < m; i++) { ` ` `  `            ``query[i][``0``]--; ``// index is 1 based ` ` `  `            ``// divide the array element  ` `            ``arr[query[i][``0``]] /= query[i][``1``]; ` `  `  `            ``// calculates the current gcd ` `            ``max_gcd = gcd(arr[query[i][``0``]], max_gcd);  ` ` `  `            ``// print the gcd after each step ` `            ``System.out.println(max_gcd); ` `        ``} ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``3``; ` `        ``int` `m = ``3``; ` `        ``int``[][] query = ``new` `int``[m][``2``]; ` `        ``int``[] arr = ``new` `int``[] { ``36``, ``24``, ``72` `}; ` `        ``query[``0``][``0``] = ``1``; ` `        ``query[``0``][``1``] = ``3``; ` `        ``query[``1``][``0``] = ``3``; ` `        ``query[``1``][``1``] = ``12``; ` `        ``query[``2``][``0``] = ``2``; ` `        ``query[``2``][``1``] = ``4``; ` ` `  `        ``print_gcd_online(n, m, query, arr); ` `    ``} ` `} `

## Python3

 `# Python3 implementation of the  ` `# above approach ` ` `  `# Returns the gcd after all  ` `# updates in the array  ` `def` `gcd(a, b):  ` `     `  `    ``if` `a ``=``=` `0``:  ` `        ``return` `b  ` ` `  `    ``return` `gcd(b ``%` `a, a)  ` ` `  `def` `print_gcd_online(n, m, query, arr):  ` ` `  `    ``# Stores the gcd of the initial  ` `    ``# array elements  ` `    ``max_gcd ``=` `0` ` `  `    ``for` `i ``in` `range``(``0``, n): ``# calculates the gcd  ` `        ``max_gcd ``=` `gcd(max_gcd, arr[i])  ` ` `  `    ``# performing online queries  ` `    ``for` `i ``in` `range``(``0``, m):  ` ` `  `        ``query[i][``0``] ``-``=` `1` `# index is 1 based  ` ` `  `        ``# divide the array element  ` `        ``arr[query[i][``0``]] ``/``/``=` `query[i][``1``]  ` `     `  `        ``# calculates the current gcd  ` `        ``max_gcd ``=` `gcd(arr[query[i][``0``]], max_gcd)  ` ` `  `        ``# Print the gcd after each step  ` `        ``print``(max_gcd)  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``n, m ``=` `3``, ``3` `    ``query ``=` `[[``1``,``3``], [``3``,``12``], [``2``,``4``]]  ` `    ``arr ``=` `[``36``, ``24``, ``72``]  ` `         `  `    ``print_gcd_online(n, m, query, arr)  ` `     `  `# This code is contributed by Rituraj Jain `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG  ` `{ ` ` `  `// returns the gcd after all  ` `// updates in the array ` `static` `int` `gcd(``int` `a, ``int` `b) ` `{ ` `    ``if` `(a == 0) ` `        ``return` `b; ` ` `  `    ``return` `gcd(b % a, a); ` `} ` ` `  `static` `void` `print_gcd_online(``int` `n, ``int` `m,  ` `                             ``int``[,] query,  ` `                             ``int``[] arr) ` `{ ` ` `  `    ``// stores the gcd of the ` `    ``// initial array elements ` `    ``int` `max_gcd = 0;  ` ` `  `    ``int` `i = 0; ` `    ``for` `(i = 0; i < n; i++) ``// calculates the gcd ` `        ``max_gcd = gcd(max_gcd, arr[i]); ` ` `  `    ``// performing online queries ` `    ``for` `(i = 0; i < m; i++)  ` `    ``{ ` ` `  `        ``query[i,0]--; ``// index is 1 based ` ` `  `        ``// divide the array element  ` `        ``arr[query[i, 0]] /= query[i, 1]; ` ` `  `        ``// calculates the current gcd ` `        ``max_gcd = gcd(arr[query[i, 0]], max_gcd);  ` ` `  `        ``// print the gcd after each step ` `        ``Console.WriteLine(max_gcd); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `n = 3; ` `    ``int` `m = 3; ` `    ``int``[,] query = ``new` `int``[m, 2]; ` `    ``int``[] arr = ``new` `int``[] { 36, 24, 72 }; ` `    ``query[0, 0] = 1; ` `    ``query[0, 1] = 3; ` `    ``query[1, 0] = 3; ` `    ``query[1, 1] = 12; ` `    ``query[2, 0] = 2; ` `    ``query[2, 1] = 4; ` ` `  `    ``print_gcd_online(n, m, query, arr); ` `} ` `} ` ` `  `// This code is contributed  ` `// by Subhadeep Gupta `

## PHP

 ` `

Output:

```12
6
6
```

Time Complexity : O(m + n)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.