The numpy.meshgrid function is used to create a rectangular grid out of two given one-dimensional arrays representing the Cartesian indexing or Matrix indexing. Meshgrid function is somewhat inspired from MATLAB.
Consider the above figure with X-axis ranging from -4 to 4 and Y-axis ranging from -5 to 5. So there are a total of (9 * 11) = 99 points marked in the figure each with a X-coordinate and a Y-coordinate. For any line parallel to the X-axis, the X-coordinates of the marked points respectively are -4, -3, -2, -1, 0, 1, 2, 3, 4. On the other hand, for any line parallel to the Y-axis, the Y-coordinates of the marked points from bottom to top are -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5. The numpy.meshgrid function returns two 2-Dimensional arrays representing the X and Y coordinates of all the points.

Examples:
Input : x = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
Output :
x_1 = array([[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.],
[-4., -3., -2., -1., 0., 1., 2., 3., 4.]])
y_1 = array([[-5., -5., -5., -5., -5., -5., -5., -5., -5.],
[-4., -4., -4., -4., -4., -4., -4., -4., -4.],
[-3., -3., -3., -3., -3., -3., -3., -3., -3.],
[-2., -2., -2., -2., -2., -2., -2., -2., -2.],
[-1., -1., -1., -1., -1., -1., -1., -1., -1.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[ 3., 3., 3., 3., 3., 3., 3., 3., 3.],
[ 4., 4., 4., 4., 4., 4., 4., 4., 4.],
[ 5., 5., 5., 5., 5., 5., 5., 5., 5.]])
Input : x = [0, 1, 2, 3, 4, 5]
y = [2, 3, 4, 5, 6, 7, 8]
Output :
x_1 = array([[0., 1., 2., 3., 4., 5.],
[0., 1., 2., 3., 4., 5.],
[0., 1., 2., 3., 4., 5.],
[0., 1., 2., 3., 4., 5.],
[0., 1., 2., 3., 4., 5.],
[0., 1., 2., 3., 4., 5.],
[0., 1., 2., 3., 4., 5.]])
y_1 = array([[2., 2., 2., 2., 2., 2.],
[3., 3., 3., 3., 3., 3.],
[4., 4., 4., 4., 4., 4.],
[5., 5., 5., 5., 5., 5.],
[6., 6., 6., 6., 6., 6.],
[7., 7., 7., 7., 7., 7.],
[8., 8., 8., 8., 8., 8.]]
Below is the code:
Python3
import numpy as np
x = np.linspace( - 4 , 4 , 9 )
y = np.linspace( - 5 , 5 , 11 )
x_1, y_1 = np.meshgrid(x, y)
print ( "x_1 = " )
print (x_1)
print ( "y_1 = " )
print (y_1)
|
Output: x_1 =
[[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]
[-4. -3. -2. -1. 0. 1. 2. 3. 4.]]
y_1 =
[[-5. -5. -5. -5. -5. -5. -5. -5. -5.]
[-4. -4. -4. -4. -4. -4. -4. -4. -4.]
[-3. -3. -3. -3. -3. -3. -3. -3. -3.]
[-2. -2. -2. -2. -2. -2. -2. -2. -2.]
[-1. -1. -1. -1. -1. -1. -1. -1. -1.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[ 2. 2. 2. 2. 2. 2. 2. 2. 2.]
[ 3. 3. 3. 3. 3. 3. 3. 3. 3.]
[ 4. 4. 4. 4. 4. 4. 4. 4. 4.]
[ 5. 5. 5. 5. 5. 5. 5. 5. 5.]]
The output of coordinates by meshgrid can also be used for plotting functions within the given coordinate range.
An Ellipse:
*** QuickLaTeX cannot compile formula:
*** Error message:
Error: Nothing to show, formula is empty
Python3
ellipse = xx * 2 + 4 * yy * * 2
plt.contourf(x_1, y_1, ellipse, cmap = 'jet' )
plt.colorbar()
plt.show()
|
Output:

Random Data:
Python3
random_data = np.random.random(( 11 , 9 ))
plt.contourf(x_1, y_1, random_data, cmap = 'jet' )
plt.colorbar()
plt.show()
|
Output:

A Sine function:
*** QuickLaTeX cannot compile formula:
*** Error message:
Error: Nothing to show, formula is empty
Python3
sine = (np.sin(x_1 * * 2 + y_1 * * 2 )) / (x_1 * * 2 + y_1 * * 2 )
plt.contourf(x_1, y_1, sine, cmap = 'jet' )
plt.colorbar()
plt.show()
|
Output:

We observe that x_1 is a row repeated matrix whereas y_1 is a column repeated matrix. One row of x_1 and one column of y_1 is enough to determine the positions of all the points as the other values will get repeated over and over. So we can edit above code as follows:
x_1, y_1 = np.meshgrid(x, y, sparse = True)
This will produce the following output:
x_1 = [[-4. -3. -2. -1. 0. 1. 2. 3. 4.]]
y_1 = [[-5.]
[-4.]
[-3.]
[-2.]
[-1.]
[ 0.]
[ 1.]
[ 2.]
[ 3.]
[ 4.]
[ 5.]]
The shape of x_1 changed from (11, 9) to (1, 9) and that of y_1 changed from (11, 9) to (11, 1)
The indexing of Matrix is however different. Actually, it is the exact opposite of Cartesian indexing.

For the matrix shown above, for a given row Y-coordinate increases as 0, 1, 2, 3 from left to right whereas for a given column X-coordinate increases from top to bottom as 0, 1, 2.
The two 2-dimensional arrays returned from Matrix indexing will be the transpose of the arrays generated by the previous program. The following code can be used for obtaining Matrix indexing:
Python3
import numpy as np
x = np.linspace( - 4 , 4 , 9 )
y = np.linspace( - 5 , 5 , 11 )
x_1, y_1 = np.meshgrid(x, y)
x_2, y_2 = np.meshgrid(x, y, indexing = 'ij' )
print ( "x_2 = " )
print (x_2)
print ( "y_2 = " )
print (y_2)
print (np. all (x_2 = = x_1.T))
print (np. all (y_2 = = y_1.T))
|
Output: x_2 =
[[-4. -4. -4. -4. -4. -4. -4. -4. -4. -4. -4.]
[-3. -3. -3. -3. -3. -3. -3. -3. -3. -3. -3.]
[-2. -2. -2. -2. -2. -2. -2. -2. -2. -2. -2.]
[-1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]
[ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
[ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]]
y_2 =
[[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]]
True
True
The sparse = True can also be added in the meshgrid function of Matrix indexing. In this case, the shape of x_2 will change from (9, 11) to (9, 1) and that of y_2 will change from (9, 11) to (1, 11).