Open In App

numpy.logaddexp() in Python

Last Updated : 28 Nov, 2018
Improve
Improve
Like Article
Like
Save
Share
Report

numpy.logaddexp() function is used to calculate Logarithm of the sum of exponentiations of the inputs.

This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases, the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. It Calculates log(exp(arr1) + exp(arr2)) .

Syntax : numpy.logaddexp(arr1, arr2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, ufunc ‘logaddexp’)

Parameters :
arr1 : [array_like] Input array.
arr2 : [array_like] Input array.
out : [ndarray, optional] A location into which the result is stored.
  -> If provided, it must have a shape that the inputs broadcast to.
  -> If not provided or None, a freshly-allocated array is returned.
where : [array_like, optional] True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
**kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.

Return : [ndarray or scalar] It returns Logarithm of exp(arr1) + exp(arr2). This is a scalar if both arr1 and arr2 are scalars.

Code #1 :




# Python3 code demonstrate logaddexp() function
  
# importing numpy
import numpy as np
  
in_num1 = 2
in_num2 = 3
print ("Input  number1 : ", in_num1)
print ("Input  number2 : ", in_num2)
  
out_num = np.logaddexp(in_num1, in_num2)
print ("Output number : ", out_num)


Output :

Input  number1 :  2
Input  number2 :  3
Output number :  3.31326168752

 
Code #2 :




# Python3 code demonstrate logaddexp() function
  
# importing numpy
import numpy as np
  
in_arr1 = [2, 3, 8
in_arr2 = [1, 2, 3]
print ("Input array1 : ", in_arr1) 
print ("Input array2 : ", in_arr2)
    
out_arr = np.logaddexp(in_arr1, in_arr2) 
print ("Output array : ", out_arr) 


Output :

Input array1 :  [2, 3, 8]
Input array2 :  [1, 2, 3]
Output array :  [ 2.31326169  3.31326169  8.00671535]


Similar Reads

Python | Numpy numpy.resize()
With the help of Numpy numpy.resize(), we can resize the size of an array. Array can be of any shape but to resize it we just need the size i.e (2, 2), (2, 3) and many more. During resizing numpy append zeros if values at a particular place is missing. Parameters: new_shape : [tuple of ints, or n ints] Shape of resized array refcheck : [bool, optio
2 min read
Python | Numpy numpy.transpose()
With the help of Numpy numpy.transpose(), We can perform the simple function of transpose within one line by using numpy.transpose() method of Numpy. It can transpose the 2-D arrays on the other hand it has no effect on 1-D arrays. This method transpose the 2-D numpy array. Parameters: axes : [None, tuple of ints, or n ints] If anyone wants to pass
2 min read
Python | Numpy numpy.ndarray.__lt__()
With the help of numpy.ndarray.__lt__() method of Numpy, We can find that which element in an array is less than the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__lt__($self, value, /) Return: self<value Example #1 : In this example we can see that
1 min read
Python | Numpy numpy.ndarray.__gt__()
With the help of numpy.ndarray.__gt__() method of Numpy, We can find that which element in an array is greater then the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__gt__($self, value, /) Return: self>value Example #1 : In this example we can see th
1 min read
Python | Numpy numpy.ndarray.__le__()
With the help of numpy.ndarray.__le__() method of Numpy, We can find that which element in an array is less than or equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__le__($self, value, /) Return: self<=value Example #1 : In this example we
1 min read
Python | Numpy numpy.ndarray.__ge__()
With the help of numpy.ndarray.__ge__() method of Numpy, We can find that which element in an array is greater then or equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__ge__($self, value, /) Return: self>=value Example #1 : In this example
1 min read
Python | Numpy numpy.ndarray.__ne__()
With the help of numpy.ndarray.__ne__() method of Numpy, We can find that which element in an array is not equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__ne__($self, value, /) Return: self!=value Example #1 : In this example we can see that
1 min read
Python | Numpy numpy.ndarray.__neg__()
With the help of numpy.ndarray.__neg__() method of Numpy, one can multiply each and every element of an array with -1. Hence, the resultant array having values like positive values becomes negative and negative values become positive. Syntax: ndarray.__neg__($self, /) Return: -self Example #1 : In this example we can see that after applying numpy._
1 min read
Python | Numpy numpy.ndarray.__pos__()
With the help of numpy.ndarray.__pos__() method of Numpy, one can multiply each and every element of an array with 1. Hence, the resultant array having values same as original array. Syntax: ndarray.__pos__($self, /) Return: +self Example #1 : In this example we can see that after applying numpy.__pos__(), we get the simple array that can be the sa
1 min read
Python | Numpy numpy.ndarray.__truediv__()
With the help of Numpy numpy.ndarray.__truediv__(), we can divide a particular value that is provided as a parameter in the ndarray.__truediv__() method. Value will be divided to each and every element in a numpy array. Syntax: ndarray.__truediv__($self, value, /) Return: self/value Example #1 : In this example, we can see that each element in an a
1 min read