# Number of ways to get even sum by choosing three numbers from 1 to N

Given an integer N, find the number of ways we can choose 3 numbers from {1, 2, 3 …, N} such that their sum is even.
Examples:

```Input :  N = 3
Output : 1
Explanation: Select 1, 2 and 3

Input :  N = 4
Output :  2
Either select (1, 2, 3) or (1, 3, 4)
```

# Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

To get sum even there can be only 2 cases:

1. Take 2 odd numbers and 1 even.
2. Take all even numbers.
```If n is even,
Count of odd numbers = n/2 and even = n/2.
Else
Count odd numbers = n/2 +1 and evne = n/2.```

Case 1 – No. of ways will be : oddC2 * even.
Case 2 – No. of ways will be : evenC3.

So, total ways will be Case_1_result + Case_2_result.

## C++

 `// C++ program for above implementation ` `#include ` `#define MOD 1000000007 ` `using` `namespace` `std; ` ` `  `// Function to count number of ways ` `int` `countWays(``int` `N) ` `{ ` `    ``long` `long` `int` `count, odd = N / 2, even; ` `    ``if` `(N & 1) ` `        ``odd = N / 2 + 1; ` ` `  `    ``even = N / 2; ` ` `  `    ``// Case 1: 2 odds and 1 even ` `    ``count = (((odd * (odd - 1)) / 2) * even) % MOD; ` ` `  `    ``// Case 2: 3 evens ` `    ``count = (count + ((even * (even - 1) *  ` `                           ``(even - 2)) / 6)) % MOD; ` ` `  `    ``return` `count; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 10; ` `    ``cout << countWays(n) << endl; ` `    ``return` `0; ` `} `

## Java

 `// java program for above implementation ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `    ``static` `long` `MOD = ``1000000007``; ` `     `  `    ``// Function to count number of ways ` `    ``static` `long` `countWays(``int` `N) ` `    ``{ ` `        ``long` `count, odd = N / ``2``, even; ` `         `  `        ``if` `((N & ``1``) > ``0``) ` `            ``odd = N / ``2` `+ ``1``; ` `     `  `        ``even = N / ``2``; ` `     `  `        ``// Case 1: 2 odds and 1 even ` `        ``count = (((odd * (odd - ``1``)) / ``2``) ` `                          ``* even) % MOD; ` `     `  `        ``// Case 2: 3 evens ` `        ``count = (count + ((even * (even ` `                ``- ``1``) * (even - ``2``)) / ``6``)) ` `                                  ``% MOD; ` `     `  `        ``return` `(``long``)count; ` `    ``} ` `     `  `    ``// Driver code ` `    ``static` `public` `void` `main (String[] args) ` `    ``{ ` `        ``int` `n = ``10``; ` `         `  `        ``System.out.println(countWays(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## Python3

 `# Python3 code for above implementation ` ` `  `MOD ``=` `1000000007` ` `  `# Function to count number of ways ` `def` `countWays( N ): ` `    ``odd ``=` `N ``/` `2` `    ``if` `N & ``1``: ` `        ``odd ``=` `N ``/` `2` `+` `1` `    ``even ``=` `N ``/` `2` `     `  `    ``# Case 1: 2 odds and 1 even ` `    ``count ``=` `(((odd ``*` `(odd ``-` `1``)) ``/` `2``) ``*` `even) ``%` `MOD ` ` `  `    ``# Case 2: 3 evens ` `    ``count ``=` `(count ``+` `((even ``*` `(even ``-` `1``) ``*` `            ``(even ``-` `2``)) ``/` `6``)) ``%` `MOD ` `    ``return` `count ` ` `  `# Driver code ` `n ``=` `10` `print``(``int``(countWays(n))) ` ` `  `# This code is contributed by "Sharad_Bhardwaj" `

## C#

 `// C# program for above implementation ` `using` `System; ` ` `  `public` `class` `GFG { ` `     `  `    ``static` `long` `MOD = 1000000007; ` `     `  `    ``// Function to count number of ways ` `    ``static` `long` `countWays(``int` `N) ` `    ``{ ` `        ``long` `count, odd = N / 2, even; ` `         `  `        ``if` `((N & 1) > 0) ` `            ``odd = N / 2 + 1; ` `     `  `        ``even = N / 2; ` `     `  `        ``// Case 1: 2 odds and 1 even ` `        ``count = (((odd * (odd - 1)) / 2)  ` `                            ``* even) % MOD; ` `     `  `        ``// Case 2: 3 evens ` `        ``count = (count + ((even * (even  ` `                  ``- 1) * (even - 2)) / 6)) ` `                                    ``% MOD; ` `     `  `        ``return` `(``long``)count; ` `    ``} ` `     `  `    ``// Driver code ` `    ``static` `public` `void` `Main () ` `    ``{ ` `        ``int` `n = 10; ` ` `  `        ``Console.WriteLine(countWays(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```60
```

This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : vt_m

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.