Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Number of ways to make binary string of length N such that 0s always occur together in groups of size K

  • Last Updated : 28 May, 2021

Given two integers N and K, the task is to count the number of ways to make a binary string of length N such that 0s always occur together in a group of size K.
Examples: 
 

Input: N = 3, K = 2 
Output :
No of binary strings: 
111 
100 
001
Input : N = 4, K = 2 
Output :
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



This problem can easily be solved using dynamic programming. Let dp[i] be the number of binary strings of length i satisfying the condition. 
From the condition it can be deduced that: 
 

  • dp[i] = 1 for 1 <= i < k.
  • Also dp[k] = 2 since a binary string of length K will either be a string of only zeros or only ones.
  • Now if we consider for i > k. If we decide the ith character to be ‘1’, then dp[i] = dp[i-1] since the number of binary strings would not change. However if we decide the ith character to be ‘0’, then we require that previous k-1 characters should also be ‘0’ and hence dp[i] = dp[i-k]. Therefore dp[i] will be the sum of these 2 values.

Thus
 

dp[i] = dp[i - 1] + dp[i - k]

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
const int mod = 1000000007;
 
// Function to return no of ways to build a binary
// string of length N such that 0s always occur
// in groups of size K
int noOfBinaryStrings(int N, int k)
{
    int dp[100002];
    for (int i = 1; i <= k - 1; i++) {
        dp[i] = 1;
    }
 
    dp[k] = 2;
 
    for (int i = k + 1; i <= N; i++) {
        dp[i] = (dp[i - 1] + dp[i - k]) % mod;
    }
 
    return dp[N];
}
 
// Driver Code
int main()
{
    int N = 4;
    int K = 2;
    cout << noOfBinaryStrings(N, K);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static int mod = 1000000007;
 
// Function to return no of ways to build a binary
// string of length N such that 0s always occur
// in groups of size K
static int noOfBinaryStrings(int N, int k)
{
    int dp[] = new int[100002];
    for (int i = 1; i <= k - 1; i++)
    {
        dp[i] = 1;
    }
 
    dp[k] = 2;
 
    for (int i = k + 1; i <= N; i++)
    {
        dp[i] = (dp[i - 1] + dp[i - k]) % mod;
    }
 
    return dp[N];
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 4;
    int K = 2;
    System.out.println(noOfBinaryStrings(N, K));
}
}
 
// This code contributed by Rajput-Ji

Python3




# Python3 iimplementation of the
# above approach
mod = 1000000007;
 
# Function to return no of ways to
# build a binary string of length N
# such that 0s always occur in
# groups of size K
def noOfBinaryStrings(N, k) :
    dp = [0] * 100002;
    for i in range(1, K) :
        dp[i] = 1;
     
    dp[k] = 2;
 
    for i in range(k + 1, N + 1) :
        dp[i] = (dp[i - 1] + dp[i - k]) % mod;
 
    return dp[N];
 
# Driver Code
if __name__ == "__main__" :
 
    N = 4;
    K = 2;
     
    print(noOfBinaryStrings(N, K));
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
static int mod = 1000000007;
 
// Function to return no of ways to build
// a binary string of length N such that
// 0s always occur in groups of size K
static int noOfBinaryStrings(int N, int k)
{
    int []dp = new int[100002];
    for (int i = 1; i <= k - 1; i++)
    {
        dp[i] = 1;
    }
 
    dp[k] = 2;
 
    for (int i = k + 1; i <= N; i++)
    {
        dp[i] = (dp[i - 1] + dp[i - k]) % mod;
    }
 
    return dp[N];
}
 
// Driver Code
public static void Main()
{
    int N = 4;
    int K = 2;
    Console.WriteLine(noOfBinaryStrings(N, K));
}
}
 
/* This code contributed by PrinciRaj1992 */

PHP




<?php
// PHP implementation of the above approach
$mod = 1000000007;
 
// Function to return no of ways to
// build a binary string of length N
// such that 0s always occur in groups
// of size K
function noOfBinaryStrings($N, $k)
{
    global $mod;
    $dp = array(0, 100002, NULL);
    for ($i = 1; $i <= $k - 1; $i++)
    {
        $dp[$i] = 1;
    }
 
    $dp[$k] = 2;
 
    for ($i = $k + 1; $i <= $N; $i++)
    {
        $dp[$i] = ($dp[$i - 1] +
                   $dp[$i - $k]) % $mod;
    }
 
    return $dp[$N];
}
 
// Driver Code
$N = 4;
$K = 2;
echo noOfBinaryStrings($N, $K);
 
// This code is contributed by ita_c
?>

Javascript




<script>
// Javascript implementation of the approach
 
let mod = 1000000007;
 
// Function to return no of ways to build a binary
// string of length N such that 0s always occur
// in groups of size K
function noOfBinaryStrings(N,k)
{
    let dp = new Array(100002);
    for (let i = 1; i <= k - 1; i++)
    {
        dp[i] = 1;
    }
   
    dp[k] = 2;
   
    for (let i = k + 1; i <= N; i++)
    {
        dp[i] = (dp[i - 1] + dp[i - k]) % mod;
    }
   
    return dp[N];
}
 
// Driver Code
let N = 4;
let K = 2;
document.write(noOfBinaryStrings(N, K));
 
// This code is contributed by rag2127.
</script>
Output: 
5

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :