Related Articles
Number of ways of distributing N identical objects in R distinct groups with no groups empty
• Last Updated : 08 Jul, 2019

Given two integer N and R, the task is to calculate the number of ways to distribute N identical objects into R distinct groups such that no groups are left empty.

Examples:

Input: N = 4, R = 2
Output: 3
No of objects in 1st group = 1, in second group = 3
No of objects in 1st group = 2, in second group = 2
No of objects in 1st group = 3, in second group = 1

Input: N = 5, R = 3
Output: 6

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Idea is to use Multinomial theorem. Let us suppose that x1 objects are placed in the first group, x2 objects are placed in second group and xR objects are placed in the Rth group. It is given that,
x1 + x2 + x3 +…+ xR = N for all xi ≥ 1 for 1 ≤ i ≤ R
Now replace every xi with yi + 1 for all 1 ≤ i ≤ R. Now all the y variaables are greater than or equal to zero.
The equation becomes,
y1 + y2 + y3 + … + yR + R = N for all yi ≥ 0 for 1 ≤ i ≤ R
y1 + y2 + y3 + … + yR = N – R
It now reduces to that standard multinomial equation whose solution is (N – R) + R – 1CR – 1.
The solution of this equation is given by N – 1CR – 1.

Below is the implementation of the above approach:

## CPP

 `// C++ implementation of the above approach``#include ``using` `namespace` `std;`` ` `// Function to return the``// value of ncr effectively``int` `ncr(``int` `n, ``int` `r)``{`` ` `    ``// Initialize the answer``    ``int` `ans = 1;`` ` `    ``for` `(``int` `i = 1; i <= r; i += 1) {`` ` `        ``// Divide simultaneously by``        ``// i to avoid overflow``        ``ans *= (n - r + i);``        ``ans /= i;``    ``}``    ``return` `ans;``}`` ` `// Function to return the number of``// ways to distribute N identical``// objects in R distinct objects``int` `NoOfDistributions(``int` `N, ``int` `R)``{``    ``return` `ncr(N - 1, R - 1);``}`` ` `// Driver code``int` `main()``{``    ``int` `N = 4;``    ``int` `R = 3;`` ` `    ``cout << NoOfDistributions(N, R);`` ` `    ``return` `0;``}`

## Java

 `// Java implementation of the above approach ``import` `java.io.*;`` ` `class` `GFG ``{``         ` `    ``// Function to return the ``    ``// value of ncr effectively ``    ``static` `int` `ncr(``int` `n, ``int` `r) ``    ``{ ``     ` `        ``// Initialize the answer ``        ``int` `ans = ``1``; ``     ` `        ``for` `(``int` `i = ``1``; i <= r; i += ``1``) ``        ``{ ``     ` `            ``// Divide simultaneously by ``            ``// i to avoid overflow ``            ``ans *= (n - r + i); ``            ``ans /= i; ``        ``} ``        ``return` `ans; ``    ``} ``     ` `    ``// Function to return the number of ``    ``// ways to distribute N identical ``    ``// objects in R distinct objects ``    ``static` `int` `NoOfDistributions(``int` `N, ``int` `R) ``    ``{ ``        ``return` `ncr(N - ``1``, R - ``1``); ``    ``} ``     ` `    ``// Driver code ``    ``public` `static` `void` `main (String[] args)``    ``{`` ` `        ``int` `N = ``4``; ``        ``int` `R = ``3``; ``     ` `        ``System.out.println(NoOfDistributions(N, R)); ``    ``}``}`` ` `// This code is contributed by ajit `

## Python3

 `# Python3 implementation of the above approach`` ` `# Function to return the``# value of ncr effectively``def` `ncr(n, r):`` ` ` ` `    ``# Initialize the answer``    ``ans ``=` `1`` ` `    ``for` `i ``in` `range``(``1``,r``+``1``): `` ` `        ``# Divide simultaneously by``        ``# i to avoid overflow``        ``ans ``*``=` `(n ``-` `r ``+` `i)``        ``ans ``/``/``=` `i``     ` `    ``return` `ans`` ` `# Function to return the number of``# ways to distribute N identical``# objects in R distinct objects``def` `NoOfDistributions(N, R):`` ` `    ``return` `ncr(N ``-` `1``, R ``-` `1``)`` ` `# Driver code`` ` `N ``=` `4``R ``=` `3`` ` `print``(NoOfDistributions(N, R))`` ` `# This code is contributed by mohit kumar 29`

## C#

 `// C# implementation of the above approach ``using` `System;`` ` `class` `GFG``{``     ` `    ``// Function to return the ``    ``// value of ncr effectively ``    ``static` `int` `ncr(``int` `n, ``int` `r) ``    ``{ ``     ` `        ``// Initialize the answer ``        ``int` `ans = 1; ``     ` `        ``for` `(``int` `i = 1; i <= r; i += 1) ``        ``{ ``     ` `            ``// Divide simultaneously by ``            ``// i to avoid overflow ``            ``ans *= (n - r + i); ``            ``ans /= i; ``        ``} ``        ``return` `ans; ``    ``} ``     ` `    ``// Function to return the number of ``    ``// ways to distribute N identical ``    ``// objects in R distinct objects ``    ``static` `int` `NoOfDistributions(``int` `N, ``int` `R) ``    ``{ ``        ``return` `ncr(N - 1, R - 1); ``    ``} ``     ` `    ``// Driver code ``    ``static` `public` `void` `Main ()``    ``{``        ``int` `N = 4; ``        ``int` `R = 3; ``     ` `        ``Console.WriteLine(NoOfDistributions(N, R)); ``    ``}``}`` ` `// This code is contributed by AnkitRai01`
Output:
```3
```

Time Complexity: O(R)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up