# Number of ways of distributing N identical objects in R distinct groups with no groups empty

Given two integer N and R, the task is to calculate the number of ways to distribute N identical objects into R distinct groups such that no groups are left empty.

Examples:

Input: N = 4, R = 2
Output: 3
No of objects in 1st group = 1, in second group = 3
No of objects in 1st group = 2, in second group = 2
No of objects in 1st group = 3, in second group = 1

Input: N = 5, R = 3
Output: 6

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Idea is to use Multinomial theorem. Let us suppose that x1 objects are placed in the first group, x2 objects are placed in second group and xR objects are placed in the Rth group. It is given that,
x1 + x2 + x3 +…+ xR = N for all xi ≥ 1 for 1 ≤ i ≤ R
Now replace every xi with yi + 1 for all 1 ≤ i ≤ R. Now all the y variaables are greater than or equal to zero.
The equation becomes,
y1 + y2 + y3 + … + yR + R = N for all yi ≥ 0 for 1 ≤ i ≤ R
y1 + y2 + y3 + … + yR = N – R
It now reduces to that standard multinomial equation whose solution is (N – R) + R – 1CR – 1.
The solution of this equation is given by N – 1CR – 1.

Below is the implementation of the above approach:

## CPP

 `// C++ implementation of the above approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the ` `// value of ncr effectively ` `int` `ncr(``int` `n, ``int` `r) ` `{ ` ` `  `    ``// Initialize the answer ` `    ``int` `ans = 1; ` ` `  `    ``for` `(``int` `i = 1; i <= r; i += 1) { ` ` `  `        ``// Divide simultaneously by ` `        ``// i to avoid overflow ` `        ``ans *= (n - r + i); ` `        ``ans /= i; ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Function to return the number of ` `// ways to distribute N identical ` `// objects in R distinct objects ` `int` `NoOfDistributions(``int` `N, ``int` `R) ` `{ ` `    ``return` `ncr(N - 1, R - 1); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 4; ` `    ``int` `R = 3; ` ` `  `    ``cout << NoOfDistributions(N, R); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the above approach  ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `         `  `    ``// Function to return the  ` `    ``// value of ncr effectively  ` `    ``static` `int` `ncr(``int` `n, ``int` `r)  ` `    ``{  ` `     `  `        ``// Initialize the answer  ` `        ``int` `ans = ``1``;  ` `     `  `        ``for` `(``int` `i = ``1``; i <= r; i += ``1``)  ` `        ``{  ` `     `  `            ``// Divide simultaneously by  ` `            ``// i to avoid overflow  ` `            ``ans *= (n - r + i);  ` `            ``ans /= i;  ` `        ``}  ` `        ``return` `ans;  ` `    ``}  ` `     `  `    ``// Function to return the number of  ` `    ``// ways to distribute N identical  ` `    ``// objects in R distinct objects  ` `    ``static` `int` `NoOfDistributions(``int` `N, ``int` `R)  ` `    ``{  ` `        ``return` `ncr(N - ``1``, R - ``1``);  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` ` `  `        ``int` `N = ``4``;  ` `        ``int` `R = ``3``;  ` `     `  `        ``System.out.println(NoOfDistributions(N, R));  ` `    ``} ` `} ` ` `  `// This code is contributed by ajit  `

## Python3

 `# Python3 implementation of the above approach ` ` `  `# Function to return the ` `# value of ncr effectively ` `def` `ncr(n, r): ` ` `  ` `  `    ``# Initialize the answer ` `    ``ans ``=` `1` ` `  `    ``for` `i ``in` `range``(``1``,r``+``1``):  ` ` `  `        ``# Divide simultaneously by ` `        ``# i to avoid overflow ` `        ``ans ``*``=` `(n ``-` `r ``+` `i) ` `        ``ans ``/``/``=` `i ` `     `  `    ``return` `ans ` ` `  `# Function to return the number of ` `# ways to distribute N identical ` `# objects in R distinct objects ` `def` `NoOfDistributions(N, R): ` ` `  `    ``return` `ncr(N ``-` `1``, R ``-` `1``) ` ` `  `# Driver code ` ` `  `N ``=` `4` `R ``=` `3` ` `  `print``(NoOfDistributions(N, R)) ` ` `  `# This code is contributed by mohit kumar 29 `

## C#

 `// C# implementation of the above approach  ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``// Function to return the  ` `    ``// value of ncr effectively  ` `    ``static` `int` `ncr(``int` `n, ``int` `r)  ` `    ``{  ` `     `  `        ``// Initialize the answer  ` `        ``int` `ans = 1;  ` `     `  `        ``for` `(``int` `i = 1; i <= r; i += 1)  ` `        ``{  ` `     `  `            ``// Divide simultaneously by  ` `            ``// i to avoid overflow  ` `            ``ans *= (n - r + i);  ` `            ``ans /= i;  ` `        ``}  ` `        ``return` `ans;  ` `    ``}  ` `     `  `    ``// Function to return the number of  ` `    ``// ways to distribute N identical  ` `    ``// objects in R distinct objects  ` `    ``static` `int` `NoOfDistributions(``int` `N, ``int` `R)  ` `    ``{  ` `        ``return` `ncr(N - 1, R - 1);  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``static` `public` `void` `Main () ` `    ``{ ` `        ``int` `N = 4;  ` `        ``int` `R = 3;  ` `     `  `        ``Console.WriteLine(NoOfDistributions(N, R));  ` `    ``} ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```3
```

Time Complexity: O(R)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.