# Number of ways for playing first move optimally in a NIM game

Two players A and B are playing NIM Game with each other. Both are playing optimally. Player A starts the game. The task is to find the number of ways of playing 1st move for A to ensure a winning strategy for A if possible, otherwise print -1.

Examples:

Input: arr[] = {1, 2, 3}
Output: -1
There is no winning strategy for A no matter how optimally he plays.

Input: arr[] = {2, 4, 5}
Output: 1
In order to play optimally, A will pick one coin from first pile and that’s the only optimal move.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. First check who will win the game by taking XOR of all the array elements if XOR is zero then no matter how optimally A play, A will always lose. If XOR is non-zero then go to Step 2.
2. We will check for every pile if we can remove some coins from that pile so that after this move, XOR of all the array elements will be zero. So for all piles, one by one we will take xor of all remaining elements of the array and will check if XOR value is greater than the number of coins in the pile. If so, it is not possible to play the first move using this pile because we can only remove coins from the pile in a move, and cannot add coins. Otherwise, we will increment the number of ways.

Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach #include using namespace std;    // Utility function to return the XOR // of all the array elements int xorArray(int arr[], int n) {     int res = 0;     for (int i = 0; i < n; i++)         res = res ^ arr[i];        return res; }    // Function to return the count of ways // to play the first move optimally int getTotalWays(int arr[], int n) {        // XOR of all the array elements     int xorArr = xorArray(arr, n);        // The player making the first move     // can't win the game no matter     // how optimally he plays     if (xorArr == 0)         return -1;        // Initialised with zero     int numberOfWays = 0;        for (int i = 0; i < n; i++) {            // requiredCoins is the number of coins         // the player making the move must leave         // in the current pile in order to play optimally         int requiredCoins = xorArr ^ arr[i];            // If requiredCoins is less than the current         // amount of coins in the current pile         // then only the player can make an optimal move         if (requiredCoins < arr[i])             numberOfWays++;     }        return numberOfWays; }    // Driver code int main() {        // Coins in each pile     int arr[] = { 3, 4, 4, 2 };     int n = sizeof(arr) / sizeof(arr[0]);        cout << getTotalWays(arr, n);        return 0; }

## Java

 // Java implementation of the approach class GFG {        // Utility function to return the XOR // of all the array elements static int xorArray(int arr[], int n) {     int res = 0;     for (int i = 0; i < n; i++)         res = res ^ arr[i];        return res; }    // Function to return the count of ways // to play the first move optimally static int getTotalWays(int arr[], int n) {        // XOR of all the array elements     int xorArr = xorArray(arr, n);        // The player making the first move     // can't win the game no matter     // how optimally he plays     if (xorArr == 0)         return -1;        // Initialised with zero     int numberOfWays = 0;        for (int i = 0; i < n; i++)     {            // requiredCoins is the number of coins         // the player making the move must leave         // in the current pile in order to play optimally         int requiredCoins = xorArr ^ arr[i];            // If requiredCoins is less than the current         // amount of coins in the current pile         // then only the player can make an optimal move         if (requiredCoins < arr[i])             numberOfWays++;     }     return numberOfWays; }    // Driver code public static void main(String[] args) {        // Coins in each pile     int arr[] = { 3, 4, 4, 2 };     int n =arr.length;        System.out.println(getTotalWays(arr, n)); } }    // This code is contributed by Code_Mech

## Python3

 # Python3 implementation of the approach    # Utility function to return the # XOR of all the array elements def xorArray(arr, n):        res = 0     for i in range(0, n):         res = res ^ arr[i]        return res    # Function to return the count of ways # to play the first move optimally def getTotalWays(arr, n):        # XOR of all the array elements     xorArr = xorArray(arr, n)        # The player making the first move     # can't win the game no matter     # how optimally he plays     if xorArr == 0:         return -1        # Initialised with zero     numberOfWays = 0        for i in range(0, n):             # requiredCoins is the number of coins the         # player making the move must leave in the         # current pile in order to play optimally         requiredCoins = xorArr ^ arr[i]            # If requiredCoins is less than the current         # amount of coins in the current pile         # then only the player can make an optimal move         if requiredCoins < arr[i]:             numberOfWays += 1        return numberOfWays    # Driver code if __name__ == "__main__":        # Coins in each pile     arr = [3, 4, 4, 2]     n = len(arr)        print(getTotalWays(arr, n))        # This code is contributed by Rituraj Jain

## C#

 // C# implementation of the approach using System;    class GFG {        // Utility function to return the XOR // of all the array elements static int xorArray(int []arr, int n) {     int res = 0;     for (int i = 0; i < n; i++)         res = res ^ arr[i];        return res; }    // Function to return the count of ways // to play the first move optimally static int getTotalWays(int []arr, int n) {        // XOR of all the array elements     int xorArr = xorArray(arr, n);        // The player making the first move     // can't win the game no matter     // how optimally he plays     if (xorArr == 0)         return -1;        // Initialised with zero     int numberOfWays = 0;        for (int i = 0; i < n; i++)     {            // requiredCoins is the number of coins         // the player making the move must leave         // in the current pile in order to play optimally         int requiredCoins = xorArr ^ arr[i];            // If requiredCoins is less than the current         // amount of coins in the current pile         // then only the player can make an optimal move         if (requiredCoins < arr[i])             numberOfWays++;     }     return numberOfWays; }    // Driver code static public void Main () {        // Coins in each pile     int []arr = { 3, 4, 4, 2 };     int n = arr.Length;            Console.Write(getTotalWays(arr, n)); } }    // This code is contributed by ajit.

## PHP



Output:

1

Time Complexity: O(N)

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.