Skip to content
Related Articles

Related Articles

Improve Article

Number of triplets such that each value is less than N and each pair sum is a multiple of K

  • Last Updated : 14 Apr, 2021

Given two integers N and K. Find the numbers of triplets (a, b, c) such that 0 ≤ a, b, c ≤ N and (a + b), (b + c) and (c + a) are multiples of K.

Examples: 

Input: N = 3, K = 2 
Output:
Triplets possible are: 
{(1, 1, 1), (1, 1, 3), (1, 3, 1) 
(1, 3, 3), (2, 2, 2), (3, 1, 1) 
(3, 1, 1), (3, 1, 3), (3, 3, 3)}

Input: N = 5, K = 3 
Output:
Only possible triplet is (3, 3, 3) 
 

Approach: Given that (a + b), (b + c) and (c + a) are multiples of K. Hence, we can say that (a + b) % K = 0, (b + c) % K = 0 and (c + a) % K = 0
If a belongs to the x modulo class of K then b should be in the (K – x)th modulo class using the first condition. 
From the second condition, it can be seen that c belongs to the x modulo class of K. Now as both a and c belong to the same modulo class and they have to satisfy the third relation which is (a + c) % K = 0. It could be only possible if x = 0 or x = K / 2
When K is an odd integer, x = K / 2 is not valid. 



Hence to solve the problem, count the number of elements from 0 to N in the 0th modulo class and the (K / 2)th modulo class of K

  • If K is odd then the result is cnt[0]3
  • If K is even then the result is cnt[0]3 + cnt[K / 2]3.

Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of triplets
int NoofTriplets(int N, int K)
{
    int cnt[K];
 
    // Initializing the count array
    memset(cnt, 0, sizeof(cnt));
 
    // Storing the frequency of each modulo class
    for (int i = 1; i <= N; i += 1) {
        cnt[i % K] += 1;
    }
 
    // If K is odd
    if (K & 1)
        return cnt[0] * cnt[0] * cnt[0];
 
    // If K is even
    else {
        return (cnt[0] * cnt[0] * cnt[0]
                + cnt[K / 2] * cnt[K / 2] * cnt[K / 2]);
    }
}
 
// Driver Code
int main()
{
    int N = 3, K = 2;
 
    // Function Call
    cout << NoofTriplets(N, K);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.Arrays;
 
class GFG
{
 
    // Function to return the number of triplets
    static int NoofTriplets(int N, int K)
    {
        int[] cnt = new int[K];
 
        // Initializing the count array
        Arrays.fill(cnt, 0, cnt.length, 0);
 
        // Storing the frequency of each modulo class
        for (int i = 1; i <= N; i += 1)
        {
            cnt[i % K] += 1;
        }
 
        // If K is odd
        if ((K & 1) != 0)
        {
            return cnt[0] * cnt[0] * cnt[0];
        }
        // If K is even
        else
        {
            return (cnt[0] * cnt[0] * cnt[0]
                    + cnt[K / 2] * cnt[K / 2] * cnt[K / 2]);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int N = 3, K = 2;
 
        // Function Call
        System.out.println(NoofTriplets(N, K));
    }
}
 
// This code is contributed by Princi Singh

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the number of triplets
    static int NoofTriplets(int N, int K)
    {
        int[] cnt = new int[K];
 
        // Initializing the count array
        Array.Fill(cnt, 0, cnt.Length, 0);
 
        // Storing the frequency of each modulo class
        for (int i = 1; i <= N; i += 1)
        {
            cnt[i % K] += 1;
        }
 
        // If K is odd
        if ((K & 1) != 0)
        {
            return cnt[0] * cnt[0] * cnt[0];
        }
        // If K is even
        else
        {
            return (cnt[0] * cnt[0] * cnt[0]
                    + cnt[K / 2] * cnt[K / 2] * cnt[K / 2]);
        }
    }
 
    // Driver Code
    static public void Main ()
    {
            int N = 3, K = 2;
 
        // Function Call
        Console.Write(NoofTriplets(N, K));
    }
}
 
// This code is contributed by ajit

Python3




# Python3 implementation of the above approach
 
# Function to return the number of triplets
def NoofTriplets(N, K) :
     
    # Initializing the count array
    cnt = [0]*K;
 
    # Storing the frequency of each modulo class
    for i in range(1, N + 1) :
        cnt[i % K] += 1;
 
    # If K is odd
    if (K & 1) :
        rslt = cnt[0] * cnt[0] * cnt[0];
        return rslt
 
    # If K is even
    else :
        rslt = (cnt[0] * cnt[0] * cnt[0] +
                cnt[K // 2] * cnt[K // 2] * cnt[K // 2]);
        return rslt
 
# Driver Code
if __name__ == "__main__" :
 
    N = 3; K = 2;
 
    # Function Call
    print(NoofTriplets(N, K));
 
# This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to return the number of triplets
function NoofTriplets(N, K)
{
    let cnt = Array(K);
 
    for(let i = 0; i < K; i++) 
        cnt[i] = 0;
 
    // Storing the frequency of
    // each modulo class
    for(let i = 1; i <= N; i += 1)
    {
        cnt[i % K] += 1;
    }
 
    // If K is odd
    if (K & 1)
        return cnt[0] * cnt[0] * cnt[0];
 
    // If K is even
    else
    {
        return (cnt[0] * cnt[0] * cnt[0] +
                 cnt[K / 2] * cnt[K / 2] *
                 cnt[K / 2]);
    }
}
 
// Driver Code
let N = 3;
let K = 2;
 
// Function Call
document.write(NoofTriplets(N, K));
 
// This code is contributed by mohit kumar 29
 
</script>
Output: 
9

 

Time Complexity: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :