Number of subarrays have bitwise OR >= K

Given an array arr[] and an integer K, the task is to count the number of sub-arrays having bitwise OR ≥ K.

Examples:

Input: arr[] = { 1, 2, 3 } K = 3
Output: 4



Bitwise OR of sub-arrays:
{ 1 } = 1
{ 1, 2 } = 3
{ 1, 2, 3 } = 3
{ 2 } = 2
{ 2, 3 } = 3
{ 3 } = 3
4 sub-arrays have bitwise OR ≥ K

Input: arr[] = { 3, 4, 5 } K = 6
Output: 2

Naive approach: Run three nested loops. The outermost loop determines the starting of the sub-array. The middle loop determines the ending of the sub-array. The innermost loop traverses the sub-array whose bounds are determined by the outermost and middle loops. For every sub-array, calculate OR and update count = count + 1 if OR is greater than K.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of required sub-arrays
int countSubArrays(const int* arr, int n, int K)
{
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
  
            int bitwise_or = 0;
  
            // Traverse sub-array [i..j]
            for (int k = i; k <= j; k++) {
                bitwise_or = bitwise_or | arr[k];
            }
            if (bitwise_or >= K)
                count++;
        }
    }
    return count;
}
  
// Driver code
int main()
{
    int arr[] = { 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 6;
    cout << countSubArrays(arr, n, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class solution
{
  
// Function to return the count of required sub-arrays
static int countSubArrays(int arr[], int n, int K)
{
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
  
            int bitwise_or = 0;
  
            // Traverse sub-array [i..j]
            for (int k = i; k <= j; k++) {
                bitwise_or = bitwise_or | arr[k];
            }
            if (bitwise_or >= K)
                count++;
        }
    }
    return count;
}
  
// Driver code
public static void main(String args[])
{
    int arr[] = { 3, 4, 5 };
    int n = arr.length;
    int k = 6;
    System.out.println(countSubArrays(arr, n, k));
    
}
}
// This code is contributed by
// Surendra_Gangwar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the count of
# required sub-arrays 
def countSubArrays(arr, n, K) :
      
    count = 0
    for i in range(n) :
        for j in range(i, n) :
  
            bitwise_or = 0
  
            # Traverse sub-array [i..j] 
            for k in range(i, j + 1) :
                bitwise_or = bitwise_or | arr[k] 
              
            if (bitwise_or >= K) :
                count += 1
                  
    return count 
  
# Driver code 
if __name__ == "__main__" :
  
    arr = [ 3, 4, 5 ]
    n = len(arr)
    k = 6
      
    print(countSubArrays(arr, n, k))
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System; 
  
class GFG
{
  
// Function to return the count of 
// required sub-arrays
static int countSubArrays(int []arr, 
                          int n, int K)
{
    int count = 0;
    for (int i = 0; i < n; i++)
    {
        for (int j = i; j < n; j++) 
        {
            int bitwise_or = 0;
  
            // Traverse sub-array [i..j]
            for (int k = i; k <= j; k++) 
            {
                bitwise_or = bitwise_or | arr[k];
            }
            if (bitwise_or >= K)
                count++;
        }
    }
    return count;
}
  
// Driver code
public static void Main()
{
    int []arr = { 3, 4, 5 };
    int n = arr.Length;
    int k = 6;
    Console.WriteLine(countSubArrays(arr, n, k));
}
}
  
// This code is contributed by
// Mohit kumar

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
  
// Function to return the count of
// required sub-arrays 
function countSubArrays($arr, $n, $K
    $count = 0; 
    for ($i = 0; $i < $n; $i++)
    {
        for ($j = 0; $j < $n; $j++)
        {
            $bitwise_or = 0;
  
            // Traverse sub-array [i..j] 
            for ($k = $i; $k < $j + 1; $k++)
                $bitwise_or = $bitwise_or | $arr[$k]; 
              
            if ($bitwise_or >= $K)
                $count += 1;
        }
    }
    return $count
}
  
// Driver code 
$arr = array( 3, 4, 5 );
$n = count($arr);
$k = 6;
  
print(countSubArrays($arr, $n, $k));
  
// This code is contributed by mits
?>

chevron_right


Output:

2

The time complexity of the above solution is O(n3).

An efficient solution uses segment trees to calculate bitwise OR of a sub-array in O(log n) time. Hence, now we directly query the segment tree instead of traversing the sub-array.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
#define N 100002
int tree[4 * N];
  
// Function to build the segment tree
void build(int* arr, int node, int start, int end)
{
    if (start == end) {
        tree[node] = arr[start];
        return;
    }
    int mid = (start + end) >> 1;
    build(arr, 2 * node, start, mid);
    build(arr, 2 * node + 1, mid + 1, end);
    tree[node] = tree[2 * node] | tree[2 * node + 1];
}
  
// Function to return the bitwise OR of segment [L..R]
int query(int node, int start, int end, int l, int r)
{
    if (start > end || start > r || end < l) {
        return 0;
    }
  
    if (start >= l && end <= r) {
        return tree[node];
    }
  
    int mid = (start + end) >> 1;
    int q1 = query(2 * node, start, mid, l, r);
    int q2 = query(2 * node + 1, mid + 1, end, l, r);
    return q1 | q2;
}
  
// Function to return the count of required sub-arrays
int countSubArrays(int arr[], int n, int K)
{
  
    // Build segment tree
    build(arr, 1, 0, n - 1);
  
    int count = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
  
            // Query segment tree for bitwise OR
            // of sub-array [i..j]
            int bitwise_or = query(1, 0, n - 1, i, j);
            if (bitwise_or >= K)
                count++;
        }
    }
    return count;
}
  
// Driver code
int main()
{
    int arr[] = { 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    int k = 6;
    cout << countSubArrays(arr, n, k);
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the approach
  
N = 100002
tree = [0]*(4 * N)
  
# Function to build the segment tree
def build(arr, node, start, end):
    if start == end:
        tree[node] = arr[start]
        return
    mid = (start + end) >> 1
    build(arr, 2 * node, start, mid)
    build(arr, 2 * node + 1, mid + 1, end)
    tree[node] = tree[2 * node] | tree[2 * node + 1]
  
# Function to return the bitwise OR of segment[L..R]
def query(node, start, end, l, r):
    if start > end or start > r or end < l:
        return 0
  
    if start >= l and end <= r:
        return tree[node]
  
    mid = (start + end) >> 1
    q1 = query(2 * node, start, mid, l, r)
    q2 = query(2 * node + 1, mid + 1, end, l, r)
    return q1 or q2
  
# Function to return the count of required sub-arrays
def countSubArrays(arr, n, K):
      
    # Build segment tree
    build(arr, 1, 0, n - 1)
  
    count = 0
    for i in range(n):
        for j in range(n):
  
            # Query segment tree for bitwise OR
            # of sub-array[i..j]
            bitwise_or = query(1, 0, n - 1, i, j)
            if bitwise_or >= K:
                count += 1
  
    return count
  
# Driver code
arr = [3, 4, 5]
n = len(arr)
  
k = 6
print(countSubArrays(arr, n, k))
  
# This code is contributed by ankush_953

chevron_right


Output:

2

The time complexity of the above solution is O(n2 log n).


A further efficient solution uses binary search. Bitwise OR is a function that never decreases with the number of inputs. For example:

OR(a, b) ≤ OR(a, b, c)
OR(a1, a2, a3, …) ≤ OR(a1, a2, a3, …, b)

By this property, OR(ai, …, aj) <= OR(ai, …, aj, aj+1). Hence, if OR(ai, …, aj) is greater than K then OR(ai, …, aj, aj+1) will also be greater than K. Hence, once we find a subarray [i..j] whose OR is greater than K, we don’t need to check subarrays [i..j+1], [i..j+2], .. and so on, because their OR will also be greater than K. We can add the count of remaining subarrays to the current sum. The first subarray from a particular starting point whose OR is greater than K is found using binary search.

Below is the implementation of the above idea:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement the above approach
#include <bits/stdc++.h>
  
#define N 100002
using namespace std;
  
int tree[4 * N];
  
// Function which builds the segment tree
void build(int* arr, int node, int start, int end)
{
    if (start == end) {
        tree[node] = arr[start];
        return;
    }
    int mid = (start + end) >> 1;
    build(arr, 2 * node, start, mid);
    build(arr, 2 * node + 1, mid + 1, end);
    tree[node] = tree[2 * node] | tree[2 * node + 1];
}
  
// Function that returns bitwise OR of segment [L..R]
int query(int node, int start, int end, int l, int r)
{
    if (start > end || start > r || end < l) {
        return 0;
    }
  
    if (start >= l && end <= r) {
        return tree[node];
    }
  
    int mid = (start + end) >> 1;
    int q1 = query(2 * node, start, mid, l, r);
    int q2 = query(2 * node + 1, mid + 1, end, l, r);
    return q1 | q2;
}
  
// Function to count requisite number of subarrays
int countSubArrays(const int* arr, int n, int K)
{
    int count = 0;
    for (int i = 0; i < n; i++) {
  
        // Check for subarrays starting with index i
        int low = i, high = n - 1, index = INT_MAX;
        while (low <= high) {
  
            int mid = (low + high) >> 1;
  
            // If OR of subarray [i..mid] >= K,
            // then all subsequent subarrays will have OR >= K
            // therefore reduce high to mid - 1
            // to find the minimal length subarray 
            // [i..mid] having OR >= K
            if (query(1, 0, n - 1, i, mid) >= K) {
                index = min(index, mid);
                high = mid - 1;
            }
            else {
                low = mid + 1;
            }
        }
  
        // Increase count with number of subarrays
        //  having OR >= K and starting with index i
        if (index != INT_MAX) {
            count += n - index;
        }
    }
    return count;
}
  
// Driver code
int main()
{
    int arr[] = { 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    // Build segment tree.
    build(arr, 1, 0, n - 1);
    int k = 6;
    cout << countSubArrays(arr, n, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG 
{
  
    static int N = 100002;
  
    static int tree[] = new int[4 * N];
  
    // Function which builds the segment tree 
    static void build(int[] arr, int node,
                    int start, int end)
    {
        if (start == end)
        {
            tree[node] = arr[start];
            return;
        }
        int mid = (start + end) >> 1;
        build(arr, 2 * node, start, mid);
        build(arr, 2 * node + 1, mid + 1, end);
        tree[node] = tree[2 * node] | tree[2 * node + 1];
    }
  
    // Function that returns bitwise
    // OR of segment [L..R] 
    static int query(int node, int start,
                    int end, int l, int r) 
    {
        if (start > end || start > r || end < l)
        {
            return 0;
        }
  
        if (start >= l && end <= r) 
        {
            return tree[node];
        }
  
        int mid = (start + end) >> 1;
        int q1 = query(2 * node, start, mid, l, r);
        int q2 = query(2 * node + 1, mid + 1, end, l, r);
        return q1 | q2;
    }
  
    // Function to count requisite number of subarrays 
    static int countSubArrays(int[] arr, 
                            int n, int K)
    {
        int count = 0;
        for (int i = 0; i < n; i++) 
        {
  
            // Check for subarrays starting with index i 
            int low = i, high = n - 1, index = Integer.MAX_VALUE;
            while (low <= high)
            {
  
                int mid = (low + high) >> 1;
  
                // If OR of subarray [i..mid] >= K, 
                // then all subsequent subarrays will
                // have OR >= K therefore reduce
                // high to mid - 1 to find the
                // minimal length subarray 
                // [i..mid] having OR >= K 
                if (query(1, 0, n - 1, i, mid) >= K)
                {
                    index = Math.min(index, mid);
                    high = mid - 1;
                
                else 
                {
                    low = mid + 1;
                }
            }
  
            // Increase count with number of subarrays 
            // having OR >= K and starting with index i 
            if (index != Integer.MAX_VALUE) 
            {
                count += n - index;
            }
        }
        return count;
    }
  
    // Driver code 
    public static void main(String[] args) 
    {
        int arr[] = {3, 4, 5};
        int n = arr.length;
          
        // Build segment tree. 
        build(arr, 1, 0, n - 1);
        int k = 6;
        System.out.println(countSubArrays(arr, n, k));
    }
}
  
// This code is contributed by Rajput-Ji

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System;
  
class GFG 
  
    static int N = 100002; 
  
    static int []tree = new int[4 * N]; 
  
    // Function which builds the segment tree 
    static void build(int[] arr, int node, 
                    int start, int end) 
    
        if (start == end) 
        
            tree[node] = arr[start]; 
            return
        
        int mid = (start + end) >> 1; 
        build(arr, 2 * node, start, mid); 
        build(arr, 2 * node + 1, mid + 1, end); 
        tree[node] = tree[2 * node] | tree[2 * node + 1]; 
    
  
    // Function that returns bitwise 
    // OR of segment [L..R] 
    static int query(int node, int start, 
                    int end, int l, int r) 
    
        if (start > end || start > r || end < l) 
        
            return 0; 
        
  
        if (start >= l && end <= r) 
        
            return tree[node]; 
        
  
        int mid = (start + end) >> 1; 
        int q1 = query(2 * node, start, mid, l, r); 
        int q2 = query(2 * node + 1, mid + 1, end, l, r); 
        return q1 | q2; 
    
  
    // Function to count requisite number of subarrays 
    static int countSubArrays(int[] arr, 
                            int n, int K) 
    
        int count = 0; 
        for (int i = 0; i < n; i++) 
        
  
            // Check for subarrays starting with index i 
            int low = i, high = n - 1, index = int.MaxValue; 
            while (low <= high) 
            
  
                int mid = (low + high) >> 1; 
  
                // If OR of subarray [i..mid] >= K, 
                // then all subsequent subarrays will 
                // have OR >= K therefore reduce 
                // high to mid - 1 to find the 
                // minimal length subarray 
                // [i..mid] having OR >= K 
                if (query(1, 0, n - 1, i, mid) >= K) 
                
                    index = Math.Min(index, mid); 
                    high = mid - 1; 
                
                else
                
                    low = mid + 1; 
                
            
  
            // Increase count with number of subarrays 
            // having OR >= K and starting with index i 
            if (index != int.MaxValue) 
            
                count += n - index; 
            
        
        return count; 
    
  
    // Driver code 
    public static void Main(String[] args) 
    
        int []arr = {3, 4, 5}; 
        int n = arr.Length; 
          
        // Build segment tree. 
        build(arr, 1, 0, n - 1); 
        int k = 6; 
        Console.WriteLine(countSubArrays(arr, n, k)); 
    
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

2

The time complexity of the above solution is O(n log2 n).



My Personal Notes arrow_drop_up

An enthusiastic Java and web developer with a little affinity for tea, cricket, English, etymology, and reading

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.