# NCERT Solutions Class 11 – Chapter 7 Binomial Theorem – Miscellaneous Exercise

Last Updated : 19 Apr, 2024

### [Hint write an = (a â€“ b + b)n and expand]

Solutions:

To prove that (a â€“ b) is a factor of (an â€“ bn),

an â€“ bn = k (a â€“ b) where k is some natural number or constant.

a can be written as = a â€“ b + b

an = (a â€“ b + b)n = [(a â€“ b) + b]n

[(a â€“ b) + b]n = nC0 (a â€“ b)n + nC1 (a â€“ b)n-1 b + â€¦â€¦….nCn-1(a â€“ b)bn-1 + nCn bn

an = (a â€“ b)n + n (a â€“ b)n-1 b + â€¦â€¦….nCn-1(a â€“ b)bn-1 + bn

Now, an – bn will be

an â€“ bn = [(a â€“ b)n + n (a â€“ b)n-1 b + â€¦â€¦….nCn-1(a â€“ b)bn-1 + bn] – bn

an â€“ bn = (a â€“ b)n + n (a â€“ b)n-1 b + â€¦â€¦….nCn-1(a â€“ b)bn-1

Taking (a-b) common, we have

an â€“ bn = (a â€“ b) [(a â€“b)n-1 + n (a â€“ b)n-2 b + â€¦â€¦ + nCn-1 bn-1]

an â€“ bn = (a â€“ b) k

Where k = [(a â€“b)n-1 + n (a â€“ b)n-2 b + â€¦â€¦ + nCn-1 bn-1] is a natural number

Hence, it is proved a â€“ b is a factor of an â€“ bn, where n is a positive integer

### Question 2. Evaluate (âˆš3â€‹+âˆš2â€‹)6âˆ’(âˆš3â€‹âˆ’âˆš2â€‹)6.

Solutions:

Using binomial theorem the expression (a + b)6 and (a â€“ b)6, can be expanded as follows:

(a + b)6 = 6C0 a6 + 6C1 a5 b + 6C2 a4 b2 + 6C3 a3 b3 + 6C4 a2 b4 + 6C5 a b5 + 6C6 b6

(a â€“ b)6 = 6C0 a6 â€“ 6C1 a5 b + 6C2 a4 b2 â€“ 6C3 a3 b3 + 6C4 a2 b4 â€“ 6C5 a b5 + 6C6 b6

(a + b)6 â€“ (a â€“ b)6 = 6C0 a6 + 6C1 a5 b + 6C2 a4 b2 + 6C3 a3 b3 + 6C4 a2 b4 + 6C5 a b5 + 6C6 b6 â€“ [6C0 a6 â€“ 6C1 a5 b + 6C2 a4 b2 â€“ 6C3 a3 b3 + 6C4 a2 b4 â€“ 6C5 a b5 + 6C6 b6]

(a + b)6 â€“ (a â€“ b)6 = 2[6C1 a5 b + 6C3 a3 b3 + 6C5 a b5]

Substituting a = âˆš3 and b = âˆš2, we get

(âˆš3 + âˆš2)6 â€“ (âˆš3 â€“ âˆš2)6 = 2 [6 (âˆš3)5 (âˆš2) + 20 (âˆš3)3 (âˆš2)3 + 6 (âˆš3) (âˆš2)5]

= 2 [54(âˆš6) + 120 (âˆš6) + 24 âˆš6]

= 2 (âˆš6) (198)

= 396 âˆš6

### Question 3. Find the value of [Tex](a^2 + \sqrt{a^2-1})^4 + (a^2 – \sqrt{a^2-1})^4[/Tex].

Solutions:

Using binomial theorem the expression (x+y)4 and (x â€“ y)4, can be expanded as follows:

(x + y)4 = 4C0 x4 + 4C1 x3 y + 4C2 x2 y2 + 4C3 x y3 + 4C4 y4

(x â€“ y)4 = 4C0 x4 â€“ 4C1 x3 y + 4C2 x2 y2 â€“ 4C3 x y3 + 4C4  y4

(x + y)4 + (x – y)4 = 4C0 x4 + 4C1 x3 y + 4C2 x2 y2 + 4C3 x y3 + 4C4 y4 + [4C0 x4 â€“ 4C1 x3 y + 4C2 x2 y2 â€“ 4C3 x y3 + 4C4 y4]

(x + y)4 + (x – y)4 = 2[4C0 x4 + 4C2 x2 y2 + 4C4 y4]

Substituting x = a2 and y = [Tex]\sqrt{a^2-1} [/Tex], we get

[Tex](a^2 + \sqrt{a^2-1})^4 + (a^2 – \sqrt{a^2-1})^4 = 2[(a^2)^4 +6 (a^2)^2 (\sqrt{a^2-1})^2 + (\sqrt{a^2-1})^4][/Tex]

= 2[a8 + 6a4 (a2-1) + (a2-1)2]

= 2[a8 + 6a6 – 6a4 + (a4 + 1 – 2(a2)(1))]

= 2[a8 + 6a6 – 6a4 + a4 + 1 – 2a2]

= 2a8 + 12a6 – 10a4 – 4a2 + 2

### Question 4. Find an approximation of (0.99)5 using the first three terms of its expansion.

Solutions:

To make 0.99 in binomial form,

0.99 = 1 â€“ 0.01

Now by applying binomial theorem, we get

(0. 99)5 = (1 â€“ 0.01)5

Taking first three terms of its expansion, we have

= 5C0 (1)5 â€“ 5C1 (1)4 (0.01) + 5C2 (1)3 (0.01)2

= 1 â€“ 5 (0.01) + 10 (0.01)2

= 1 â€“ 0.05 + 0.001

= 0.951

Approximation of (0.99)5 = 0.951.

### Question 5. Expand using Binomial Theorem [Tex](1+\frac{x}{2} – \frac{2}{x})^4[/Tex], xâ‰ 0.

Solutions:

Grouping [Tex](1+\frac{x}{2} – \frac{2}{x})^4  [/Tex] in binomial form, we have

[Tex][(1+\frac{x}{2}) – \frac{2}{x}]^4[/Tex]

Comparing it with (a+b)n,

a = [Tex](1+\frac{x}{2})  [/Tex], b = [Tex]\frac{2}{x}  [/Tex] and n = 4

[Tex][(1+\frac{x}{2}) – \frac{2}{x}]^4  [/Tex] = 4C0 [Tex](1+\frac{x}{2})^4  [/Tex] â€“  4C1 [Tex](1+\frac{x}{2})^3 (\frac{2}{x})  [/Tex] + 4C2 [Tex](1+\frac{x}{2})^2 (\frac{2}{x})^2  [/Tex] â€“ 4C3 [Tex](1+\frac{x}{2}) (\frac{2}{x})^3  [/Tex] + 4C4 [Tex](\frac{2}{x})^4[/Tex]

[Tex](1+\frac{x}{2})^4 â€“ 4 (1+\frac{x}{2})^3 (\frac{2}{x}) + 6 (1+(\frac{x}{2})^2 (\frac{4}{x^2}) â€“ 4 (1+\frac{x}{2}) (\frac{8}{x^3}) + (\frac{16}{x^4})[/Tex]

[Tex](1+\frac{x}{2})^4 â€“  (\frac{8}{x}) (1+\frac{x}{2})^3 + (\frac{24}{x^2}) (1+\frac{x}{2})^2  â€“ 4 (\frac{8}{x^3} + (\frac{x}{2})(\frac{8}{x^3})) + (\frac{16}{x^4})[/Tex]

[Tex](1+\frac{x}{2})^4 â€“  (\frac{8}{x}) (1+\frac{x}{2})^3 + (\frac{24}{x^2}) (1+\frac{x}{2})^2  â€“ 4 (\frac{8}{x^3} + \frac{4}{x^2}) + (\frac{16}{x^4})[/Tex]

Now, lets get the value of [Tex](1+\frac{x}{2})^4, (1+\frac{x}{2})^3  [/Tex] and [Tex](1+\frac{x}{2})^2[/Tex]

[Tex](1+\frac{x}{2})^2 = 12 + (\frac{x}{2})^2 + 2(1)(\frac{x}{2})[/Tex]

[Tex](1+\frac{x}{2})^2 = 1 + \frac{x^2}{4} + x[/Tex]

[Tex](1+\frac{x}{2})^3  [/Tex] = 3C0 (1)3 + 3C1 (1)2 [Tex](\frac{x}{2})  [/Tex] + 3C2 (1) [Tex](\frac{x}{2})^2  [/Tex] + 3C3 [Tex](\frac{x}{2})^3[/Tex]

[Tex](1+\frac{x}{2})^3 = 1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8}[/Tex]

[Tex](1+\frac{x}{2})^4  [/Tex] = 4C0 (1)4 + 4C1 (1)3 [Tex](\frac{x}{2})  [/Tex] + 4C2 (1)2 [Tex](\frac{x}{2})^2  [/Tex] + 4C3 (1) [Tex](\frac{x}{2})^3  [/Tex] + 4C4 [Tex](\frac{x}{2})^4[/Tex]

[Tex](1+\frac{x}{2})^4 = 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}[/Tex]

Now, substituting these values in the main equation, we get

[Tex]1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} â€“  (\frac{8}{x}) (1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8}) + (\frac{24}{x^2}) (1 + \frac{x^2}{4} + x)  â€“ 4 (\frac{8}{x^3} + \frac{4}{x^2}) + (\frac{16}{x^4})[/Tex]

[Tex]1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} â€“  (\frac{8}{x} + (\frac{8}{x})(\frac{3x}{2}) + (\frac{8}{x})(\frac{3x^2}{4}) + (\frac{8}{x})(\frac{x^3}{8})) + (\frac{24}{x^2} + (\frac{24}{x^2})(\frac{x^2}{4}) + (\frac{24}{x^2}) (x))  â€“ (\frac{32}{x^3} + \frac{16}{x^2}) + (\frac{16}{x^4})[/Tex]

[Tex]1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} â€“  \frac{8}{x} – 12 – 6x – x^2 + \frac{24}{x^2} + 6+ \frac{24}{x}  â€“ \frac{32}{x^3} – \frac{16}{x^2}) + (\frac{16}{x^4})[/Tex]

[Tex]\frac{16}{x} + \frac{8}{x^2} – \frac{32}{x^3} + \frac{16}{x^4} – 4x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} â€“  5[/Tex]

### Question 6. Find the expansion of (3x2â€“ 2ax + 3a2)3 using binomial theorem.

Solutions:

Grouping (3x2â€“ 2ax + 3a2)3 in binomial form, we have

[3x2 + (- 2ax + 3a2)]3

Comparing it with (a+b)n,

a = 3x2, b = -a (2x-3a) and n = 3

[3x2 + (-a (2x-3a))]3

= 3C0 (3x2)3 +  3C1 (3x2)2 (-a (2x-3a)) +  3C2 (3x2) (-a (2x-3a))2 +  3C3 (-a (2x-3a))3

= 27x6 +  3 (9x4) (-a) (2x-3a) +  3 (3x2) (-a)2 (2x-3a)2 + (-a)3 (2x-3a)3

= 27x6 + (-54ax5 + 81a2x4) +  9a2x2 (2x-3a)2 – a3 (2x-3a)3

Now, lets get the value of (2x-3a)2 and (2x-3a)3.

(2x-3a)2 = (2x)2 + (3a)2 – 2(2x)(3a)

(2x-3a)2 = 4x2 + 9a2 -12xa

(2x-3a)3 = (2x)3 – (3a)3 – 3(2x)(3a)(2x-3a)

(2x-3a)3 = 8x3 – 27a3 – 36x2a +54xa2

Now, substituting these values in the main equation, we get

= 27x6 – 54ax5 + 81a2x4 +  9a2x2 (4x2 + 9a2 -12xa) – a3 (8x3 – 27a3 – 36x2a + 54xa2)

= 27x6 – 54ax5 + 81a2x4 + 36a2x4 + 81a4x2 -108x3a3 – (8a3x3 – 27a6 – 36x2a4 + 54xa5)

= 27x6 – 54ax5 + 117a2x4 + 81a4x2 -108x3a3 – 8a3x3 + 27a6 + 36x2a4 – 54xa5

= 27x6 â€“ 54ax5+ 117a2x4 â€“ 116a3x3 + 117a4x2 â€“ 54a5x + 27a6

Previous
Next