Open In App
Related Articles

Most Frequent Subtree Sum from a given Binary Tree

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given a Binary Tree, the task is to find the most frequent subtree sum that can be obtained by considering every node of the given tree as the root of the subtree. If more than one such sums exist, then print all of them.

Examples:

Input:
                 5
              /   \
            2   -4 

Output: 2 -4 3
Explanation:
The sum of nodes considering 5 as the root of subtree is 5 + 2 – 4 = 3.
The sum of nodes considering 2 as the root of subtree is 2 = 2.
The sum of nodes considering -4 as the root of subtree is -4 = -4.
Since all the sums have same frequency, print all the sum.

Input:
              4
           /   \
         2    -4 

Output: 2
Explanation:
The sum of nodes considering 4 as the root of subtree is 4 + 2 – 4 = 2.
The sum of nodes considering 2 as the root of subtree is 2 = 2.
The sum of nodes considering -4 as the root of subtree is -4 = -4.
Since, sum 2 has maximum frequency ( = 2). Hence, print the value 2.

Approach: The idea to use the DFS Traversal for the given tree to solve the given problem. Follow the below steps to solve the problem:

  • Create two auxiliary Hash Map M and F where M is a set of integer keys and corresponding lists, and F will store the frequency of each number.
  • Perform the DFS Traversal for the given tree and do the following:
    • If the node is NULL, return 0.
    • Initialize variables left and right that stores the value of the sum of nodes left and right subtree of the current node.
    • Find the sum of currentNode.value + left + right store it in a variable totalSum.
    • Now update the frequency of totalSum in the map F.
    • Update the frequency of the value F[totalSum] as totalSum in the map M.
    • Return the value to totalSum from the current recursive function.
  • After the above steps, print all the element of the list M.rbegin().

Below is the implementation of the above approach:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the vector
void printVector(vector<int> v)
{
    // Traverse vector c
    for (int i = 0; i < v.size(); i++) {
        cout << v[i] << " ";
    }
}
 
// TreeNode class
class TreeNode {
public:
    int val;
    TreeNode *left, *right;
 
    // Constructor
    TreeNode(int data)
    {
        val = data;
        left = NULL;
        right = NULL;
    }
};
 
// Function to insert node in the
// binary tree
void insert(TreeNode** root, int val)
{
    // Initialize Queue
    queue<TreeNode*> q;
 
    // Push the node root
    q.push(*root);
 
    // While Q.size() is there
    while (q.size()) {
 
        // Get the front node
        TreeNode* temp = q.front();
        q.pop();
 
        // If left is NULL
        if (!temp->left) {
            if (val)
                temp->left = new TreeNode(val);
            else
                temp->left = new TreeNode(0);
            return;
        }
        else {
            q.push(temp->left);
        }
 
        // If right is NULL
        if (!temp->right) {
            if (val)
                temp->right = new TreeNode(val);
            else
                temp->right = new TreeNode(0);
            return;
        }
        else {
            q.push(temp->right);
        }
    }
}
 
// Function to make the tree from
// given node values
TreeNode* buildTree(vector<int> v)
{
    TreeNode* root = new TreeNode(v[0]);
 
    // Traverse and insert node
    for (int i = 1; i < v.size(); i++) {
        insert(&root, v[i]);
    }
    return root;
}
 
// Utility function to find subtree
// sum with highest frequency of a
// particular node
int findsubTreeSumUtil(
    TreeNode* node, map<int,
                        vector<int> >& mpp,
    map<int, int>& frequency)
{
    if (!node)
        return 0;
 
    // Recur for the left subtree
    int left = findsubTreeSumUtil(
        node->left, mpp, frequency);
 
    // Recur for the right subtree
    int right = findsubTreeSumUtil(
        node->right, mpp, frequency);
 
    // Stores sum of nodes of a subtree
    int totalSum = node->val + left + right;
 
    // Update the frequency
    if (!frequency.count(totalSum)) {
        mpp[1].push_back(totalSum);
        frequency[totalSum] = 1;
    }
    else {
        frequency[totalSum]++;
        mpp[frequency[totalSum]].push_back(totalSum);
    }
 
    // Return the total sum
    return totalSum;
}
 
// Function to find subtree sum with
// highest frequency of given tree
void findsubTreeSum(TreeNode* root)
{
    // Store list of nodes attached to
    // a particular node and frequency
    // of visited nodes
    map<int, vector<int> > mpp;
    map<int, int> frequency;
 
    // Base Case
    if (!root) {
        printVector({});
        return;
    }
 
    // DFS function call
    findsubTreeSumUtil(root, mpp, frequency);
 
    // Print the vector
    printVector(mpp.rbegin()->second);
}
 
// Driver Code
int main()
{
    // Given nodes of the tree
    vector<int> v = { 5, 2, -4 };
 
    // Function call to build the tree
    TreeNode* tree = buildTree(v);
 
    // Function Call
    findsubTreeSum(tree);
 
    return 0;
}

                    

Java

// Java program for the above approach
 
// Importing required classes
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Queue;
import java.util.TreeMap;
 
public class GFG {
    // Function to print the list
    static void printVector(ArrayList<Integer> v)
    {
        // Traverse list
        for (int i = 0; i < v.size(); i++) {
            System.out.print(v.get(i) + " ");
        }
    }
 
    // TreeNode class
    static class TreeNode {
        int val;
        TreeNode left, right;
 
        // Constructor
        TreeNode(int data)
        {
            val = data;
            left = null;
            right = null;
        }
    }
 
    // Function to insert node in the
    // binary tree
    static void insert(TreeNode root, int val)
    {
        // Initialize Queue
        Queue<TreeNode> q = new LinkedList<TreeNode>();
 
        // Push the node root
        q.add(root);
 
        // While queue is not empty
        while (q.isEmpty() == false) {
 
            // Get the front node
            TreeNode temp = q.peek();
            q.poll();
 
            // If left is NULL
            if (temp.left == null) {
                temp.left = new TreeNode(val);
                return;
            }
            else {
                q.add(temp.left);
            }
 
            // If right is NULL
            if (temp.right == null) {
                temp.right = new TreeNode(val);
                return;
            }
            else {
                q.add(temp.right);
            }
        }
    }
 
    // Function to make the tree from
    // given node values
    static TreeNode buildTree(ArrayList<Integer> v)
    {
        TreeNode root = new TreeNode(v.get(0));
 
        // Traverse and insert node
        for (int i = 1; i < v.size(); i++) {
            insert(root, v.get(i));
        }
        return root;
    }
 
    // Utility function to find subtree
    // sum with highest frequency of a
    // particular node
    static int findsubTreeSumUtil(
        TreeNode node,
        TreeMap<Integer, ArrayList<Integer> > mpp,
        HashMap<Integer, Integer> frequency)
    {
        if (node == null)
            return 0;
 
        // Recur for the left subtree
        int left
            = findsubTreeSumUtil(node.left, mpp, frequency);
 
        // Recur for the right subtree
        int right = findsubTreeSumUtil(node.right, mpp,
                                       frequency);
 
        // Stores sum of nodes of a subtree
        int totalSum = node.val + left + right;
 
        // Update the frequency
        // If there is no node with sub-tree sum equal to
        // totalSum It is the first occurrence of totalSum
        // value
        if (frequency.get(totalSum) == null) {
            ArrayList<Integer> temp = mpp.get(1);
            // If there is no sum which has occurred only
            // once
            if (temp == null)
                temp = new ArrayList<Integer>();
            temp.add(totalSum);
            mpp.put(1, temp);
            frequency.put(totalSum, 1);
        }
        // There is a node with sub-tree sum equal to
        // totalSum
        else {
            frequency.put(totalSum,
                          frequency.get(totalSum) + 1);
            // Get list of sum values which has
            // occurrence equal to occurrence of totalSum
            ArrayList<Integer> temp
                = mpp.get(frequency.get(totalSum));
            // If there is no sum which has occurrence
            // equal to occurrence of totalSum
            if (temp == null)
                temp = new ArrayList<Integer>();
            temp.add(totalSum);
            mpp.put(frequency.get(totalSum), temp);
        }
 
        // Return the total sum
        return totalSum;
    }
 
    // Function to find subtree sum with
    // highest frequency of given tree
    static void findsubTreeSum(TreeNode root)
    {
        // Store list of nodes attached to
        // a particular node and frequency
        // of visited nodes
        TreeMap<Integer, ArrayList<Integer> > mpp
            = new TreeMap<Integer, ArrayList<Integer> >();
        HashMap<Integer, Integer> frequency
            = new HashMap<Integer, Integer>();
 
        // Base Case
        if (root == null) {
            return;
        }
 
        // DFS function call
        findsubTreeSumUtil(root, mpp, frequency);
 
        // Print the list of most-frequent subtree sum
        printVector(mpp.lastEntry().getValue());
    }
 
    // Driver Code
    public static void main(String args[])
    {
        // Given nodes of the tree
        ArrayList<Integer> v = new ArrayList<Integer>();
        v.addAll(Arrays.asList(5, 2, -4));
 
        // Function call to build the tree
        TreeNode tree = buildTree(v);
 
        // Function Call
        findsubTreeSum(tree);
    }
}
 
// This code is contributed by jainlovely450

                    

Python3

# TreeNode class to represent a node in a binary tree
class TreeNode:
    def __init__(self, val):
        self.val = val  # value of the node
        self.left = None  # left child of the node
        self.right = None  # right child of the node
 
# Function to insert a node in the binary tree
def insert(root, val):
   
    # Initialize a queue with the root node
    q = [root]
     
    # While the queue is not empty
    while q:
       
        # Get the front node in the queue
        temp = q.pop(0)
         
        # If the left child of the node is not None
        if not temp.left:
           
            # Insert the value as the left child of the node
            if val:
                temp.left = TreeNode(val)
            else:
                temp.left = TreeNode(0)
                 
            # Return after inserting the node
            return
        else:
           
            # If the left child is not None, append it to the queue
            q.append(temp.left)
             
        # If the right child of the node is not None
        if not temp.right:
           
            # Insert the value as the right child of the node
            if val:
                temp.right = TreeNode(val)
            else:
                temp.right = TreeNode(0)
                 
            # Return after inserting the node
            return
        else:
           
            # If the right child is not None, append it to the queue
            q.append(temp.right)
 
# Function to build a binary tree from a list of values
def buildTree(v):
   
    # Create the root node with the first value in the list
    root = TreeNode(v[0])
     
    # Insert the rest of the values in the list as nodes in the tree
    for i in range(1, len(v)):
        insert(root, v[i])
         
    # Return the root node
    return root
 
# Helper function to find the sum of each subtree
# and store the sum and its frequency in mpp and
#frequency dictionaries
def findsubTreeSumUtil(node, mpp, frequency) :
   
    # If the node is None, return 0
    if not node:
        return 0
       
    # Calculate the sum of the left subtree
    left = findsubTreeSumUtil(node.left, mpp, frequency)
     
    # Calculate the sum of the right subtree
    right = findsubTreeSumUtil(node.right, mpp, frequency)
     
    # Calculate the sum of the current subtree
    totalSum = node.val + left + right
     
    # If the sum has not been seen before
    if totalSum not in frequency:
       
        # Add the sum to the mpp dictionary
        mpp[1].append(totalSum)
         
        # Set the frequency of the sum to 1
        frequency[totalSum] = 1
    else:
       
        # If the sum has been seen before, increase its frequency by 1
        frequency[totalSum] += 1
         
        # Add the sum to the mpp dictionary
        mpp[frequency[totalSum]].append(totalSum)
         
    # Return the sum of the current subtree
    return totalSum
 
# Function to find the sum of the subtree with
def findsubTreeSum(root):
   
  # Store list of nodes attached to
  # a particular node and frequency
 # of visited nodes
    mpp = {1: []}
    frequency = {}
    if not root:
        print([])
        return
    findsubTreeSumUtil(root, mpp, frequency)
     
    # Print the list of most-frequent subtree sum
    print(mpp[max(mpp.keys())])
 
# Driver code
v = [5, 2, -4]
tree = buildTree(v)
findsubTreeSum(tree)
 
# This code is contributed by Potta Lokesh

                    

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
 
class GFG
{
   
  // Function to print the list
  static void printVector(List<int> v)
  {
     
    // Traverse list
    for (int i = 0; i < v.Count; i++)
    {
      Console.Write(v[i] + " ");
    }
  }
 
  // TreeNode class
  class TreeNode
  {
    public int val;
    public TreeNode left, right;
 
 
    // Constructor
    public TreeNode(int data)
    {
      val = data;
      left = null;
      right = null;
    }
  }
 
  // Function to insert node in the
  // binary tree
  static void insert(TreeNode root, int val)
  {
    // Initialize Queue
    Queue<TreeNode> q = new Queue<TreeNode>();
 
    // Push the node root
    q.Enqueue(root);
 
    // While queue is not empty
    while (q.Count != 0)
    {
 
      // Get the front node
      TreeNode temp = q.Peek();
      q.Dequeue();
 
      // If left is NULL
      if (temp.left == null)
      {
        temp.left = new TreeNode(val);
        return;
      }
      else
      {
        q.Enqueue(temp.left);
      }
 
      // If right is NULL
      if (temp.right == null)
      {
        temp.right = new TreeNode(val);
        return;
      }
      else
      {
        q.Enqueue(temp.right);
      }
    }
  }
 
  // Function to make the tree from
  // given node values
  static TreeNode buildTree(List<int> v)
  {
    TreeNode root = new TreeNode(v[0]);
 
    // Traverse and insert node
    for (int i = 1; i < v.Count; i++)
    {
      insert(root, v[i]);
    }
    return root;
  }
 
  // Utility function to find subtree
  // sum with highest frequency of a
  // particular node
  static int findsubTreeSumUtil(
    TreeNode node,
    SortedDictionary<int, List<int>> mpp,
    Dictionary<int, int> frequency)
  {
    if (node == null)
      return 0;
 
 
    // Recur for the left subtree
    int left = findsubTreeSumUtil(node.left, mpp, frequency);
 
    // Recur for the right subtree
    int right = findsubTreeSumUtil(node.right, mpp, frequency);
 
    // Stores sum of nodes of a subtree
    int totalSum = node.val + left + right;
 
    // Update the frequency
    // If there is no node with sub-tree sum equal to
    // totalSum It is the first occurrence of totalSum
    // value
    if (!frequency.ContainsKey(totalSum))
    {
       
      // If there is no sum which has occurred only
      // once
      List<int> temp = mpp.GetValueOrDefault(1, new List<int>());
      temp.Add(totalSum);
      mpp[1] = temp;
      frequency[totalSum] = 1;
    }
 
    // There is a node with sub-tree sum equal to
    // totalSum
    else
    {
      frequency[totalSum] = frequency[totalSum] + 1;
 
      // Get list of sum values which has
      // occurrence equal to occurrence of totalSum
      List<int> temp = mpp.GetValueOrDefault(frequency[totalSum], new List<int>());
      temp.Add(totalSum);
      mpp[frequency[totalSum]] = temp;
    }
 
    // Return the total sum
    return totalSum;
  }  
 
 
  // Function to find subtree sum with
  // highest frequency of given tree
  static void findsubTreeSum(TreeNode root)
  {
 
    // Store list of nodes attached to
    // a particular node and frequency
    // of visited nodes
    SortedDictionary<int, List<int>> mpp = new SortedDictionary<int, List<int>>();
    Dictionary<int, int> frequency = new Dictionary<int, int>();
 
    // Base Case
    if (root == null)
    {
      return;
    }
 
    // DFS function call
    findsubTreeSumUtil(root, mpp, frequency);
 
 
    // Print the list of most-frequent subtree sum
    printVector(mpp.Last().Value);
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    List<int> v = new List<int>();
    v.AddRange(new int[] { 5, 2, -4 });
 
    // Function call to build the tree
    TreeNode tree = buildTree(v);
 
    // Function Call
    findsubTreeSum(tree);
  }
}
 
// This code is contributed by princekumaras

                    

Javascript

// JavaScript equivalent
 
class TreeNode {
  constructor(data) {
    this.val = data;
    this.left = null;
    this.right = null;
  }
}
 
const insert = (root, val) => {
  const q = [];
  q.push(root);
 
  while (q.length) {
    const temp = q.shift();
 
    if (!temp.left) {
      temp.left = new TreeNode(val || 0);
      return;
    } else {
      q.push(temp.left);
    }
 
    if (!temp.right) {
      temp.right = new TreeNode(val || 0);
      return;
    } else {
      q.push(temp.right);
    }
  }
};
 
const buildTree = (v) => {
  const root = new TreeNode(v[0]);
  for (let i = 1; i < v.length; i++) {
    insert(root, v[i]);
  }
  return root;
};
 
const findsubTreeSumUtil = (node, mpp, frequency) => {
  if (!node) return 0;
 
  const left = findsubTreeSumUtil(node.left, mpp, frequency);
  const right = findsubTreeSumUtil(node.right, mpp, frequency);
  const totalSum = node.val + left + right;
 
  if (!frequency[totalSum]) {
    if (!mpp[1]) mpp[1] = [];
    mpp[1].push(totalSum);
    frequency[totalSum] = 1;
  } else {
    frequency[totalSum]++;
    if (!mpp[frequency[totalSum]]) mpp[frequency[totalSum]] = [];
    mpp[frequency[totalSum]].push(totalSum);
  }
 
  return totalSum;
};
 
const findsubTreeSum = (root) => {
  const mpp = {};
  const frequency = {};
  if (!root) return [];
 
  findsubTreeSumUtil(root, mpp, frequency);
 
  const keys = Object.keys(mpp).sort((a, b) => b - a);
  return mpp[keys[0]];
};
 
const v = [5, 2, -4];
const tree = buildTree(v);
console.log(findsubTreeSum(tree));

                    

Output: 
2 -4 3

 

Time Complexity: O(N)
Auxiliary Space: O(N)



Last Updated : 14 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads