You are given a binary tree and a given sum. The task is to check if there exist a subtree whose sum of all nodes is equal to the given sum.
Examples :
// For above tree Input : sum = 17 Output: "Yes" // sum of all nodes of subtree {3, 5, 9} = 17 Input : sum = 11 Output: "No" // no subtree with given sum exist
The idea is to traverse tree in Postorder fashion because here we have to think bottom-up . First calculate the sum of left subtree then right subtree and check if sum_left + sum_right + cur_node = sum is satisfying the condition that means any subtree with given sum exist. Below is the recursive implementation of algorithm.
C++
// C++ program to find if there is a subtree with // given sum #include<bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node* left, *right; }; /* utility that allocates a new node with the given data and NULL left and right pointers. */ struct Node* newnode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // function to check if there exist any subtree with given sum // cur_sum --> sum of current subtree from ptr as root // sum_left --> sum of left subtree from ptr as root // sum_right --> sum of right subtree from ptr as root bool sumSubtreeUtil( struct Node *ptr, int *cur_sum, int sum) { // base condition if (ptr == NULL) { *cur_sum = 0; return false ; } // Here first we go to left sub-tree, then right subtree // then first we calculate sum of all nodes of subtree // having ptr as root and assign it as cur_sum // cur_sum = sum_left + sum_right + ptr->data // after that we check if cur_sum == sum int sum_left = 0, sum_right = 0; return ( sumSubtreeUtil(ptr->left, &sum_left, sum) || sumSubtreeUtil(ptr->right, &sum_right, sum) || ((*cur_sum = sum_left + sum_right + ptr->data) == sum)); } // Wrapper over sumSubtreeUtil() bool sumSubtree( struct Node *root, int sum) { // Initialize sum of subtree with root int cur_sum = 0; return sumSubtreeUtil(root, &cur_sum, sum); } // driver program to run the case int main() { struct Node *root = newnode(8); root->left = newnode(5); root->right = newnode(4); root->left->left = newnode(9); root->left->right = newnode(7); root->left->right->left = newnode(1); root->left->right->right = newnode(12); root->left->right->right->right = newnode(2); root->right->right = newnode(11); root->right->right->left = newnode(3); int sum = 22; if (sumSubtree(root, sum)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java program to find if there // is a subtree with given sum import java.util.*; class GFG { /* A binary tree node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left, right; } static class INT { int v; INT( int a) { v = a; } } /* utility that allocates a new node with the given data and null left and right pointers. */ static Node newnode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // function to check if there exist // any subtree with given sum // cur_sum -. sum of current subtree // from ptr as root // sum_left -. sum of left subtree // from ptr as root // sum_right -. sum of right subtree // from ptr as root static boolean sumSubtreeUtil(Node ptr, INT cur_sum, int sum) { // base condition if (ptr == null ) { cur_sum = new INT( 0 ); return false ; } // Here first we go to left // sub-tree, then right subtree // then first we calculate sum // of all nodes of subtree having // ptr as root and assign it as // cur_sum. (cur_sum = sum_left + // sum_right + ptr.data) after that // we check if cur_sum == sum INT sum_left = new INT( 0 ), sum_right = new INT( 0 ); return (sumSubtreeUtil(ptr.left, sum_left, sum) || sumSubtreeUtil(ptr.right, sum_right, sum) || ((cur_sum.v = sum_left.v + sum_right.v + ptr.data) == sum)); } // Wrapper over sumSubtreeUtil() static boolean sumSubtree(Node root, int sum) { // Initialize sum of // subtree with root INT cur_sum = new INT( 0 ); return sumSubtreeUtil(root, cur_sum, sum); } // Driver Code public static void main(String args[]) { Node root = newnode( 8 ); root.left = newnode( 5 ); root.right = newnode( 4 ); root.left.left = newnode( 9 ); root.left.right = newnode( 7 ); root.left.right.left = newnode( 1 ); root.left.right.right = newnode( 12 ); root.left.right.right.right = newnode( 2 ); root.right.right = newnode( 11 ); root.right.right.left = newnode( 3 ); int sum = 22 ; if (sumSubtree(root, sum)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed // by Arnab Kundu |
Python3
# Python3 program to find if there is a # subtree with given sum # Binary Tree Node """ utility that allocates a newNode with the given key """ class newnode: # Construct to create a newNode def __init__( self , key): self .data = key self .left = None self .right = None # function to check if there exist any # subtree with given sum # cur_sum -. sum of current subtree # from ptr as root # sum_left -. sum of left subtree from # ptr as root # sum_right -. sum of right subtree # from ptr as root def sumSubtreeUtil(ptr,cur_sum, sum ): # base condition if (ptr = = None ): cur_sum[ 0 ] = 0 return False # Here first we go to left sub-tree, # then right subtree then first we # calculate sum of all nodes of subtree # having ptr as root and assign it as cur_sum # cur_sum = sum_left + sum_right + ptr.data # after that we check if cur_sum == sum sum_left, sum_right = [ 0 ], [ 0 ] x = sumSubtreeUtil(ptr.left, sum_left, sum ) y = sumSubtreeUtil(ptr.right, sum_right, sum ) cur_sum[ 0 ] = (sum_left[ 0 ] + sum_right[ 0 ] + ptr.data) return ((x or y) or (cur_sum[ 0 ] = = sum )) # Wrapper over sumSubtreeUtil() def sumSubtree(root, sum ): # Initialize sum of subtree with root cur_sum = [ 0 ] return sumSubtreeUtil(root, cur_sum, sum ) # Driver Code if __name__ = = '__main__' : root = newnode( 8 ) root.left = newnode( 5 ) root.right = newnode( 4 ) root.left.left = newnode( 9 ) root.left.right = newnode( 7 ) root.left.right.left = newnode( 1 ) root.left.right.right = newnode( 12 ) root.left.right.right.right = newnode( 2 ) root.right.right = newnode( 11 ) root.right.right.left = newnode( 3 ) sum = 22 if (sumSubtree(root, sum )) : print ( "Yes" ) else : print ( "No" ) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
using System; // C# program to find if there // is a subtree with given sum public class GFG { /* A binary tree node has data, pointer to left child and a pointer to right child */ public class Node { public int data; public Node left, right; } public class INT { public int v; public INT( int a) { v = a; } } /* utility that allocates a new node with the given data and null left and right pointers. */ public static Node newnode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // function to check if there exist // any subtree with given sum // cur_sum -. sum of current subtree // from ptr as root // sum_left -. sum of left subtree // from ptr as root // sum_right -. sum of right subtree // from ptr as root public static bool sumSubtreeUtil(Node ptr, INT cur_sum, int sum) { // base condition if (ptr == null ) { cur_sum = new INT(0); return false ; } // Here first we go to left // sub-tree, then right subtree // then first we calculate sum // of all nodes of subtree having // ptr as root and assign it as // cur_sum. (cur_sum = sum_left + // sum_right + ptr.data) after that // we check if cur_sum == sum INT sum_left = new INT(0), sum_right = new INT(0); return (sumSubtreeUtil(ptr.left, sum_left, sum) || sumSubtreeUtil(ptr.right, sum_right, sum) || ((cur_sum.v = sum_left.v + sum_right.v + ptr.data) == sum)); } // Wrapper over sumSubtreeUtil() public static bool sumSubtree(Node root, int sum) { // Initialize sum of // subtree with root INT cur_sum = new INT(0); return sumSubtreeUtil(root, cur_sum, sum); } // Driver Code public static void Main( string [] args) { Node root = newnode(8); root.left = newnode(5); root.right = newnode(4); root.left.left = newnode(9); root.left.right = newnode(7); root.left.right.left = newnode(1); root.left.right.right = newnode(12); root.left.right.right.right = newnode(2); root.right.right = newnode(11); root.right.right.left = newnode(3); int sum = 22; if (sumSubtree(root, sum)) { Console.WriteLine( "Yes" ); } else { Console.WriteLine( "No" ); } } } // This code is contributed by Shrikant13 |
Output:
Yes
This article is contributed by Shashank Mishra ( Gullu ). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.