Modulus of all pairwise consecutive elements in an Array

Given an array of N elements. The task is to print the modulus of all of the pairwise consecutive elements. That is for all pair of consecutive elements say ((a[i], a[i+1])), print (a[i] % a[i+1]).

Note: Consecutive pairs of an array of size N are (a[i], a[i+1]) for all i ranging from 0 to N-2.

Examples:



Input: arr[] = {8, 5, 4, 3, 15, 20}
Output: 3 1 1 3 15 

Input: arr[] = {5, 10, 15, 20}
Output: 5 10 15 

Approach: The solution is to traverse the array and calculate and print the modulus of every pair (arr[i], arr[i+1]).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print the modulus
// of the consecutive elements
#include <iostream>
using namespace std;
  
// Function to print pairwise modulus
// of consecutive elements
void pairwiseModulus(int arr[], int n)
{
    for (int i = 0; i < n - 1; i++) {
  
        // Modulus of consecutive numbers
        cout << (arr[i] % arr[i + 1]) << " ";
    }
}
  
// Driver Code
int main()
{
    int arr[] = { 8, 5, 4, 3, 15, 20 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    pairwiseModulus(arr, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print the modulus
// of the consecutive elements
import java.util.*;
  
class Geeks {
      
// Function to print pairwise modulus
// of consecutive elements
static void pairwiseModulus(int arr[], int n)
{
    for (int i = 0; i < n - 1; i++) {
  
        // Modulus of consecutive numbers
        System.out.println((arr[i] % arr[i + 1]));
    }
}
  
// Driver Code
public static void main(String args[])
{
    int arr[] = { 8, 5, 4, 3, 15, 20 };
    int n = arr.length;
  
    pairwiseModulus(arr, n);
}
}
  
// This code is contributed by ankita_saini

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to print the modulus
# of the consecutive elements
  
# Function to print pairwise modulus
# of consecutive elements
def pairwiseModulus(arr, n):
    for i in range(0, n - 1, 1):
          
        # Modulus of consecutive numbers
        print((arr[i] % arr[i + 1]), 
                         end = " ")
      
# Driver Code
if __name__ == '__main__':
    arr = [8, 5, 4, 3, 15, 20
    n = len(arr)
    pairwiseModulus(arr, n)
  
# This code is contributed 
# by Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print the modulus
// of the consecutive elements
using System;
  
class Geeks {
      
// Function to print pairwise modulus
// of consecutive elements
static void pairwiseModulus(int[] arr, int n)
{
    for (int i = 0; i < n - 1; i++) {
  
        // Modulus of consecutive numbers
        Console.WriteLine((arr[i] % arr[i + 1]));
    }
}
  
// Driver Code
public static void Main(String []args)
{
    int[] arr = {8, 5, 4, 3, 15, 20};
    int n = arr.Length;
  
    pairwiseModulus(arr, n);
}
}
  
// This code is contributed by ankita_saini

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
//PHP program to print the modulus 
// of the consecutive elements 
  
// Function to print pairwise modulus 
// of consecutive elements 
function pairwiseModulus( $arr, $n
    for ($i = 0; $i < $n - 1; $i++) { 
  
        // Modulus of consecutive numbers 
        echo  ($arr[$i] % $arr[$i + 1]), " "
    
  
// Driver Code 
    $arr = array( 8, 5, 4, 3, 15, 20 ); 
    $n = sizeof($arr) / sizeof($arr[0]); 
  
    pairwiseModulus($arr, $n); 
  
  
// This code is contributed by ajit
?>

chevron_right


Output:

3 1 1 3 15

Time complexity : O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.