Related Articles

# Minimum time required to schedule K processes

• Difficulty Level : Hard
• Last Updated : 13 Jul, 2021

Given a positive integer K and an array arr[] consisting of N positive integers, such that arr[i] is the number of processes ith processor can schedule in 1 second. The task is to minimize the total time required to schedule K processes such that after scheduling by the ith processor, arr[i] is reduced to floor(arr[i]/2).

Examples:

Input: N = 5, arr[] = {3, 1, 7, 2, 4}, K = 15
Output: 4
Explanation:
The order of scheduled process are as follows:

1. The 3rd process is scheduled first. The array arr[] modifies to {3, 1, 3, 2, 4}, as arr = floor(arr / 2) = floor(7 / 2) = 3.
2. The 5th process is scheduled next. The array arr[] modifies to {3, 1, 3, 2, 2}.
3. The 1st process is scheduled next. The array arr[] modifies to {1, 1, 3, 2, 2}.
4. The 2nd process is scheduled next. The array arr[] modifies to {3, 0, 3, 2, 4}.

The total processes scheduled by all the process = 7 + 4 + 3 + 1 = 15(= K) and the total time required is 4 seconds.

Input: N = 4, arr[] = {1, 5, 8, 6}, K = 10
Output: 2

Naive Approach: The simplest approach to solve the given problem is to sort the given list in ascending order and choose the processor with the highest ability and reduce the value of K by that value and delete that processor from the list and add half of that in the sorted list again. Repeat the above process until at least K processes are scheduled and print the time required after scheduling at least K processes.

Time Complexity: O(N*log N)
Auxiliary Space: O(N)

Efficient Approach: The above approach can also be optimized by using the concept of Hashing. Follow the below steps to solve the problem:

• Initialize an auxiliary array tmp[] of the size of the maximum element present in the given array.
• Initialize a variable, say count to store the minimum time to schedule all processes respectively.
• Traverse the given array tmp[] from the end and perform the following steps:
• If the current element in tmp[] is greater than 0 and i * tmp[i] is smaller than K.
• Decrease the value of K by the value i * tmp[i].
• Increase tmp[i/2] by tmp[i] as the ability of the processor will decrease by half.
• Increase the value of count by the value tmp[i].
• If the value of K is already smaller than or equal to 0, then print the value of count as the result.
• If the current element in the array tmp[] is at least 0 and the value of i * tmp[i] is at least K, then perform the following steps:
• If K is divisible by the current index, then increment the value of count by K / i.
• Otherwise, increment the value of count by K/i +1.
• After completing the above steps, print -1 if it is not possible to schedule all processes. Otherwise, print the count as the minimum time required.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to find minimum required``// time to schedule all process``int` `minTime(``int` `A[], ``int` `n, ``int` `K)``{``    ` `    ``// Stores max element from A[]``    ``int` `max_ability = A;` `    ``// Find the maximum element``    ``for``(``int` `i = 1; i < n; i++)``    ``{``        ``max_ability = max(max_ability, A[i]);``    ``}` `    ``// Stores frequency of each element``    ``int` `tmp[max_ability + 1] = {0};` `    ``// Stores minimum time required``    ``// to schedule all process``    ``int` `count = 0;` `    ``// Count frequencies of elements``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``tmp[A[i]]++;``    ``}` `    ``// Find the minimum time``    ``for``(``int` `i = max_ability; i >= 0; i--)``    ``{``        ``if` `(tmp[i] != 0)``        ``{``            ``if` `(tmp[i] * i < K)``            ``{``                ` `                ``// Decrease the value``                ``// of K``                ``K -= (i * tmp[i]);` `                ``// Increment tmp[i/2]``                ``tmp[i / 2] += tmp[i];` `                ``// Increment the count``                ``count += tmp[i];` `                ``// Return count, if all``                ``// process are scheduled``                ``if` `(K <= 0)``                ``{``                    ``return` `count;``                ``}``            ``}` `            ``else``            ``{``                ` `                ``// Increment count``                ``if` `(K % i != 0)``                ``{``                    ``count += (K / i) + 1;``                ``}``                ``else``                ``{``                    ``count += (K / i);``                ``}` `                ``// Return the count``                ``return` `count;``            ``}``        ``}``    ``}` `    ``// If it is not possible to``    ``// schedule all process``    ``return` `-1;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 3, 1, 7, 2, 4 };``    ``int` `N = 5;``    ``int` `K = 15;``    ` `    ``cout << minTime(arr, N, K);``    ` `    ``return` `0;``}` `// This code is contributed by mohit kumar 29`

## Java

 `// Java program for the above approach` `import` `java.util.*;``import` `java.lang.*;` `class` `GFG {` `    ``// Function to find minimum required``    ``// time to schedule all process``    ``static` `int` `minTime(``int``[] A, ``int` `n, ``int` `K)``    ``{``        ``// Stores max element from A[]``        ``int` `max_ability = A[``0``];` `        ``// Find the maximum element``        ``for` `(``int` `i = ``1``; i < n; i++) {``            ``max_ability = Math.max(``                ``max_ability, A[i]);``        ``}` `        ``// Stores frequency of each element``        ``int` `tmp[] = ``new` `int``[max_ability + ``1``];` `        ``// Stores minimum time required``        ``// to schedule all process``        ``int` `count = ``0``;` `        ``// Count frequencies of elements``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``tmp[A[i]]++;``        ``}` `        ``// Find the minimum time``        ``for` `(``int` `i = max_ability;``             ``i >= ``0``; i--) {` `            ``if` `(tmp[i] != ``0``) {` `                ``if` `(tmp[i] * i < K) {` `                    ``// Decrease the value``                    ``// of K``                    ``K -= (i * tmp[i]);` `                    ``// Increment tmp[i/2]``                    ``tmp[i / ``2``] += tmp[i];` `                    ``// Increment the count``                    ``count += tmp[i];` `                    ``// Return count, if all``                    ``// process are scheduled``                    ``if` `(K <= ``0``) {``                        ``return` `count;``                    ``}``                ``}` `                ``else` `{` `                    ``// Increment count``                    ``if` `(K % i != ``0``) {``                        ``count += (K / i) + ``1``;``                    ``}``                    ``else` `{``                        ``count += (K / i);``                    ``}` `                    ``// Return the count``                    ``return` `count;``                ``}``            ``}``        ``}` `        ``// If it is not possible to``        ``// schedule all process``        ``return` `-``1``;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``3``, ``1``, ``7``, ``2``, ``4` `};``        ``int` `N = arr.length;``        ``int` `K = ``15``;``        ``System.out.println(``            ``minTime(arr, N, K));``    ``}``}`

## Python3

 `# Python3 program for the above approach` `# Function to find minimum required``# time to schedule all process``def` `minTime(A, n, K):``    ` `    ``# Stores max element from A[]``    ``max_ability ``=` `A[``0``]` `    ``# Find the maximum element``    ``for` `i ``in` `range``(``1``, n):``        ``max_ability ``=` `max``(max_ability, A[i])` `    ``# Stores frequency of each element``    ``tmp ``=` `[``0` `for` `i ``in` `range``(max_ability ``+` `1``)]` `    ``# Stores minimum time required``    ``# to schedule all process``    ``count ``=` `0` `    ``# Count frequencies of elements``    ``for` `i ``in` `range``(n):``        ``tmp[A[i]] ``+``=` `1` `    ``# Find the minimum time``    ``i ``=` `max_ability``    ` `    ``while``(i >``=` `0``):``        ``if` `(tmp[i] !``=` `0``):``            ``if` `(tmp[i] ``*` `i < K):``                ` `                ``# Decrease the value``                ``# of K``                ``K ``-``=` `(i ``*` `tmp[i])` `                ``# Increment tmp[i/2]``                ``tmp[i ``/``/` `2``] ``+``=` `tmp[i]` `                ``# Increment the count``                ``count ``+``=` `tmp[i]` `                ``# Return count, if all``                ``# process are scheduled``                ``if` `(K <``=` `0``):``                    ``return` `count``            ``else``:``                ` `                ``# Increment count``                ``if` `(K ``%` `i !``=` `0``):``                    ``count ``+``=` `(K ``/``/` `i) ``+` `1``                ``else``:``                    ``count ``+``=` `(K ``/``/` `i)` `                ``# Return the count``                ``return` `count``        ``i ``-``=` `1` `    ``# If it is not possible to``    ``# schedule all process``    ``return` `-``1` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``arr ``=` `[ ``3``, ``1``, ``7``, ``2``, ``4` `]``    ``N ``=` `5``    ``K ``=` `15``    ` `    ``print``(minTime(arr, N, K))` `# This code is contributed by SURENDRA_GANGWAR`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{` `// Function to find minimum required``// time to schedule all process``static` `int` `minTime(``int``[] A, ``int` `n, ``int` `K)``{``    ` `    ``// Stores max element from A[]``    ``int` `max_ability = A;` `    ``// Find the maximum element``    ``for``(``int` `i = 1; i < n; i++)``    ``{``        ``max_ability = Math.Max(``            ``max_ability, A[i]);``    ``}` `    ``// Stores frequency of each element``    ``int` `[]tmp = ``new` `int``[max_ability + 1];` `    ``// Stores minimum time required``    ``// to schedule all process``    ``int` `count = 0;` `    ``// Count frequencies of elements``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``tmp[A[i]]++;``    ``}``    ` `    ``// Find the minimum time``    ``for``(``int` `i = max_ability; i >= 0; i--)``    ``{``        ``if` `(tmp[i] != 0)``        ``{``            ``if` `(tmp[i] * i < K)``            ``{``                ` `                ``// Decrease the value``                ``// of K``                ``K -= (i * tmp[i]);` `                ``// Increment tmp[i/2]``                ``tmp[i / 2] += tmp[i];` `                ``// Increment the count``                ``count += tmp[i];` `                ``// Return count, if all``                ``// process are scheduled``                ``if` `(K <= 0)``                ``{``                    ``return` `count;``                ``}``            ``}` `            ``else``            ``{``                ` `                ``// Increment count``                ``if` `(K % i != 0)``                ``{``                    ``count += (K / i) + 1;``                ``}``                ``else``                ``{``                    ``count += (K / i);``                ``}` `                ``// Return the count``                ``return` `count;``            ``}``        ``}``    ``}` `    ``// If it is not possible to``    ``// schedule all process``    ``return` `-1;``}` `// Driver Code``public` `static` `void` `Main(``string``[] args)``{``    ``int` `[]arr = { 3, 1, 7, 2, 4 };``    ``int` `N = arr.Length;``    ``int` `K = 15;``    ` `    ``Console.WriteLine(minTime(arr, N, K));``}``}` `// This code is contributed by ukasp`

## Javascript

 ``
Output
`4`

Time Complexity: O(M), where M is the maximum element in the array.
Auxiliary Space: O(M)

Alternative Approach(Using STL): The given problem can be solved by using the Greedy Approach with the help of max-heap. Follow the steps below to solve the problem:

• Initialize a priority queue, say PQ, and insert all the elements of the given array into PQ.
• Initialize a variable, say ans as 0 to store the resultant maximum diamond gained.
• Iterate a loop until the priority queue PQ is not empty and the value of K > 0:
• Pop the top element of the priority queue and add the popped element to the variable ans.
• Divide the popped element by 2 and insert it into the priority queue PQ.
• Decrement the value of K by 1.
• After completing the above steps, print the value of ans as the result.

Below is the implementation of the above approach:

## C++14

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to execute k processes that can be gained in``// minimum amount of time``void` `executeProcesses(``int` `A[], ``int` `N, ``int` `K)``{``    ``// Stores all the array elements``    ``priority_queue<``int``> pq;` `    ``// Push all the elements to the``    ``// priority queue``    ``for` `(``int` `i = 0; i < N; i++) {``        ``pq.push(A[i]);``    ``}` `    ``// Stores the required result``    ``int` `ans = 0;` `    ``// Loop while the queue is not``    ``// empty and K is positive``    ``while` `(!pq.empty() && K > 0) {` `        ``// Store the top element``        ``// from the pq``        ``int` `top = pq.top();` `        ``// Pop it from the pq``        ``pq.pop();` `        ``// Add it to the answer``        ``ans ++;` `        ``// Divide it by 2 and push it``        ``// back to the pq``        ``K = K - top;``        ``top = top / 2;``        ``pq.push(top);``    ``}` `    ``// Print the answer``    ``cout << ans;``}` `// Driver Code``int` `main()``{``    ``int` `A[] = { 3, 1, 7, 4, 2 };``    ``int` `K = 15;``    ``int` `N = ``sizeof``(A) / ``sizeof``(A);``    ``executeProcesses(A, N, K);` `    ``return` `0;``}`

## Python3

 `# Python3 program for the above approach`` ` `# Function to execute k processes that``# can be gained in minimum amount of time``def` `executeProcesses(A, N, K):``    ` `    ``# Stores all the array elements``    ``pq ``=` `[]``    ` `    ``# Push all the elements to the``    ``# priority queue``    ``for` `i ``in` `range``(N):``        ``pq.append(A[i])``    ` `    ``# Stores the required result``    ``ans ``=` `0``    ``pq.sort()``    ` `    ``# Loop while the queue is not``    ``# empty and K is positive``    ``while` `(``len``(pq) > ``0` `and` `K > ``0``):``        ` `        ``# Store the top element``        ``# from the pq``        ``top ``=` `pq.pop()``        ` `        ``# Add it to the answer``        ``ans ``+``=` `1``        ` `        ``# Divide it by 2 and push it``        ``# back to the pq``        ``K ``-``=` `top``        ``top ``/``/``=``2``        ``pq.append(top)``        ` `        ``pq.sort()``    ` `    ``# Print the answer``    ``print``(ans)` `# Driver Code``A ``=` `[ ``3``, ``1``, ``7``, ``4``, ``2` `]``K ``=` `15``N``=``len``(A)``executeProcesses(A, N, K)` `#  This code is contributed by patel2127`

## Javascript

 ``
Output
`4`

Time Complexity: O((N + K)*log N)

Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up