Minimum steps to reach N from 1 by multiplying each step by 2, 3, 4 or 5

Given an integer N, the task is to find the minimum number of steps to reach the number N from 1 by multiplying each step by 2, 3, 4 or 5. If it is not possible to reach N, print -1.

Examples:

Input: N = 10
Output: 2
Explanation:
Initial number = 1
Step 1: Multiply it by 2, Current Number = 2
Step 2: Multiply it by 5, Current Number = 10
Therefore, Minimum 2 steps required to reach 10.

Input: N = 13
Output: -1
Explanation:
There is no way reach 13 using any given operations

Approach: The idea is to use Greedy Alogorithm to choose the operation that should be performed at each step and perform the operations in the reverse manner that is instead of going from 1 to N, find the operations required to reach N to 1. Below is the illustration of the steps:



  • Apply the operations below until N is greater than 1.
  • Check if N is divisible by 5, Then increase steps by 1 and reduce N to N/5
  • Else, check if N is divisible by 4, Then increase steps by 1 and reduce N to N/4
  • Else, check if N is divisible by 3, Then increase steps by 1 and reduce N to N/3
  • Else, check if N is divisible by 2, Then increase steps by 1, and reduce N to N/2
  • If at any step no operation can be applied then there is no possible set of operations to reach N from 1. Therefore, return -1.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find
// minimum number of steps
// to reach N from 1
  
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to find a minimum number
// of steps to reach N from 1
int Minsteps(int n)
{
    int ans = 0;
  
    // Check until N is greater
    // than 1 and operations
    // can be applied
    while (n > 1) {
  
        // Condition to choose the
        // operations greedily
        if (n % 5 == 0) {
  
            ans++;
            n = n / 5;
            continue;
        }
        else if (n % 4 == 0) {
            ans++;
            n = n / 4;
            continue;
        }
        else if (n % 3 == 0) {
            ans++;
            n = n / 3;
            continue;
        }
        else if (n % 2 == 0) {
            ans++;
            n = n / 2;
            continue;
        }
        return -1;
    }
    return ans;
}
  
// Driver code
int main()
{
    int n = 10;
    cout << Minsteps(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find
// minimum number of steps
// to reach N from 1
  
import java.util.*;
  
class GFG{
  
// Function to find a minimum number
// of steps to reach N from 1
static int Minsteps(int n)
{
    int ans = 0;
  
    // Check until N is greater
    // than 1 and operations
    // can be applied
    while (n > 1)
    {
          
        // Condition to choose the
        // operations greedily
        if (n % 5 == 0)
        {
            ans++;
            n = n / 5;
            continue;
        }
        else if (n % 4 == 0)
        {
            ans++;
            n = n / 4;
            continue;
        }
        else if (n % 3 == 0
        {
            ans++;
            n = n / 3;
            continue;
        }
        else if (n % 2 == 0
        {
            ans++;
            n = n / 2;
            continue;
        }
        return -1;
    }
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int n = 10;
    System.out.print(Minsteps(n));
}
}
  
// This code is contributed by Amit Katiyar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find 
# minimum number of steps 
# to reach N from 1 
  
# Function to find a minimum number 
# of steps to reach N from 1 
def Minsteps(n): 
  
    ans = 0
  
    # Check until N is greater 
    # than 1 and operations 
    # can be applied 
    while (n > 1):
  
        # Condition to choose the 
        # operations greedily 
        if (n % 5 == 0): 
            ans = ans + 1
            n = n / 5 
            continue 
  
        elif (n % 4 == 0): 
            ans = ans + 1
            n = n / 4 
            continue 
  
        elif (n % 3 == 0):
            ans = ans + 1
            n = n / 3 
            continue 
  
        elif (n % 2 == 0):
            ans = ans + 1
            n = n / 2 
            continue 
  
        return -1
  
    return ans
  
# Driver code 
n = 10
print(Minsteps(n))
  
# This code is contributed by Pratik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find
// minimum number of steps
// to reach N from 1
using System;
  
class GFG{
  
// Function to find a minimum number
// of steps to reach N from 1
static int Minsteps(int n)
{
    int ans = 0;
  
    // Check until N is greater
    // than 1 and operations
    // can be applied
    while (n > 1)
    {
          
        // Condition to choose the
        // operations greedily
        if (n % 5 == 0)
        {
            ans++;
            n = n / 5;
            continue;
        }
        else if (n % 4 == 0)
        {
            ans++;
            n = n / 4;
            continue;
        }
        else if (n % 3 == 0) 
        {
            ans++;
            n = n / 3;
            continue;
        }
        else if (n % 2 == 0) 
        {
            ans++;
            n = n / 2;
            continue;
        }
        return -1;
    }
    return ans;
}
  
// Driver code
public static void Main()
{
    int n = 10;
    Console.Write(Minsteps(n));
}
}
  
// This code is contributed by rutvik_56

chevron_right


Output:

2

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.