Given a number, check if it is divisible by 7. You are not allowed to use modulo operator, floating point arithmetic is also not allowed.

A simple method is repeated subtraction. Following is another interesting method.

Divisibility by 7 can be checked by a recursive method. A number of the form 10a + b is divisible by 7 if and only if a – 2b is divisible by 7. In other words, subtract twice the last digit from the number formed by the remaining digits. Continue to do this until a small number.

**Example:** the number 371: 37 – (2×1) = 37 – 2 = 35; 3 – (2 × 5) = 3 – 10 = -7; thus, since -7 is divisible by 7, 371 is divisible by 7.

Following is the implementation of the above method

## C/C++

// A Program to check whether a number is divisible by 7 #include <stdio.h> int isDivisibleBy7( int num ) { // If number is negative, make it positive if( num < 0 ) return isDivisibleBy7( -num ); // Base cases if( num == 0 || num == 7 ) return 1; if( num < 10 ) return 0; // Recur for ( num / 10 - 2 * num % 10 ) return isDivisibleBy7( num / 10 - 2 * ( num - num / 10 * 10 ) ); } // Driver program to test above function int main() { int num = 616; if( isDivisibleBy7(num ) ) printf( "Divisible" ); else printf( "Not Divisible" ); return 0; }

## Java

// Java program to check whether a number is divisible by 7 import java.io.*; class GFG { // Function to check whether a number is divisible by 7 static boolean isDivisibleBy7(int num) { // If number is negative, make it positive if( num < 0 ) return isDivisibleBy7( -num ); // Base cases if( num == 0 || num == 7 ) return true; if( num < 10 ) return false; // Recur for ( num / 10 - 2 * num % 10 ) return isDivisibleBy7( num / 10 - 2 * ( num - num / 10 * 10 ) ); } // Driver program public static void main (String[] args) { int num = 616; if(isDivisibleBy7(num)) System.out.println("Divisible"); else System.out.println("Not Divisible"); } } // Contributed by Pramod Kumar

## Python

# Python program to check whether a number is divisible by 7 # Function to check whether a number is divisible by 7 def isDivisibleBy7(num) : # If number is negative, make it positive if num < 0 : return isDivisibleBy7( -num ) # Base cases if( num == 0 or num == 7 ) : return True if( num < 10 ) : return False # Recur for ( num / 10 - 2 * num % 10 ) return isDivisibleBy7( num / 10 - 2 * ( num - num / 10 * 10 ) ) # Driver program num = 616 if(isDivisibleBy7(num)) : print "Divisible" else : print "Not Divisible" # This code is contributed by Nikita Tiwari

## C#

// C# program to check whether a // number is divisible by 7 using System; class GFG { // Function to check whether a // number is divisible by 7 static bool isDivisibleBy7(int num) { // If number is negative, // make it positive if( num < 0 ) return isDivisibleBy7(-num); // Base cases if( num == 0 || num == 7 ) return true; if( num < 10 ) return false; // Recur for ( num / 10 - 2 * num % 10 ) return isDivisibleBy7(num / 10 - 2 * ( num - num / 10 * 10 )); } // Driver Code public static void Main () { int num = 616; if(isDivisibleBy7(num)) Console.Write("Divisible"); else Console.Write("Not Divisible"); } } // This code is contributed by Nitin Mittal.

## PHP

<?php // PHP Program to check whether // a number is divisible by 7 // Function to check whether a // number is divisible by 7 function isDivisibleBy7( $num ) { // If number is negative, // make it positive if( $num < 0 ) return isDivisibleBy7( -$num ); // Base cases if( $num == 0 || $num == 7 ) return 1; if( $num < 10 ) return 0; // Recur for ( num / 10 - 2 * num % 10 ) return isDivisibleBy7($num / 10 - 2 * ($num - $num / 10 * 10 ) ); } // Driver Code $num = 616; if( isDivisibleBy7($num )>=0 ) echo("Divisible"); else echo("Not Divisible"); // This code is contributed by vt_m. ?>

Output:

Divisible

**How does this work?** Let ‘b’ be the last digit of a number ‘n’ and let ‘a’ be the number we get when we split off ‘b’.

The representation of the number may also be multiplied by any number relatively prime to the divisor without changing its divisibility. After observing that 7 divides 21, we can perform the following:

10.a + b

after multiplying by 2, this becomes

20.a + 2.b

and then

21.a - a + 2.b

Eliminating the multiple of 21 gives

-a + 2b

and multiplying by -1 gives

a - 2b

There are other interesting methods to check divisibility by 7 and other numbers. See following Wiki page for details.

**References:**

http://en.wikipedia.org/wiki/Divisibility_rule

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

**Practice Tags :**