# Minimum steps to convert all paths in matrix from top left to bottom right as palindromic paths

Given a matrix mat[][] with N rows and M columns. The task is to find the minimum number of changes required in the matrix such that every path from top left to bottom right is a palindromic path. In a path only right and bottom movements are allowed from one cell to another cell.
Examples:

Input: mat[][] = {{1, 2}, {3, 1}}
Output:
Explanation:
Every path in the matrix from top left to bottom right is palindromic.
Paths => {1, 2, 1}, {1, 3, 1}

Input: mat[][] = {{1, 2}, {3, 5}}
Output:
Explanation:
Only one change is required for the every path to be palindromic.
That is => mat = 1
Paths => {1, 2, 1}, {1, 3, 1}

Approach: The key observation in the problem is that elements at the same distance from the front end or rear end are equal. Therefore, find all the elements at equal distance from (0, 0) and (N-1, M-1) and then make all of them equal in a minimum number of changes. Maintain a count variable to get the total number of changes. Below is the illustration of the approach:

• The distance possible from the top left and bottom right is 0 to N + M – 2.
• Maintain two-pointers one at the top left that is the distance at 0 and another at N + M – 2.
• Iterate over the matrix and for all distance maintain an hash-map of the elements of the matrix at the current distance.
• Update the matrix elements with the minimum number of changes required.
• Finally, increment the left distance by 1 and decrement the right distance by 1.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to find the  ` `// minimum number of changes required ` `// such that every path from top left  ` `// to the bottom right  ` `// are palindromic paths ` ` `  `#include ` `using` `namespace` `std; ` `#define M 3 ` `#define N 3 ` ` `  `// Function to find the minimum number  ` `// of the changes required for the  ` `// every path to be palindromic ` `int` `minchanges(``int` `mat[N][M]) ` `{ ` `    ``// count variable for  ` `    ``// maintaining total changes. ` `    ``int` `count = 0; ` ` `  `    ``// left and right variables for  ` `    ``// keeping distance values ` `    ``// from cell(0, 0) and  ` `    ``// (N-1, M-1) respectively. ` `    ``int` `left = 0, right = N + M - 2; ` ` `  `    ``while` `(left < right) { ` ` `  `        ``unordered_map<``int``, ``int``> mp; ` `        ``int` `totalsize = 0; ` ` `  `        ``// Iterating over the matrix ` `        ``for` `(``int` `i = 0; i < N; i++) { ` `            ``for` `(``int` `j = 0; j < M; j++) { ` `                ``if` `(i + j == left) { ` `                    ``mp[mat[i][j]]++; ` `                    ``totalsize++; ` `                ``} ` `                ``else` `if` `(i + j == right) { ` `                    ``mp[mat[i][j]]++; ` `                    ``totalsize++; ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``// Finding minimum number ` `        ``// of changes required. ` `        ``unordered_map<``int``,  ` `          ``int``>::iterator itr = mp.begin(); ` `        ``int` `changes = 0; ` `        ``for` `(; itr != mp.end(); itr++) ` `            ``changes = max(changes, itr->second); ` ` `  `        ``// Minimum no. of changes will  ` `        ``// be the the minimum no. ` `        ``// of different values and  ` `        ``// we will assume to ` `        ``// make them equals to value  ` `        ``// with maximum frequency element ` `        ``count += totalsize - changes; ` `         `  `        ``// Moving ahead with ` `        ``// greater distance ` `        ``left++; ` `        ``right--; ` `    ``} ` `    ``return` `count; ` `} ` ` `  `// Driven Code ` `int` `main() ` `{ ` `    ``int` `mat[][M] = { ` `        ``{ 1, 4, 1 }, ` `        ``{ 2, 5, 3 }, ` `        ``{ 1, 3, 1 } ` `    ``}; ` ` `  `    ``cout << minchanges(mat); ` `    ``return` `0; ` `} `

## Java

 `// Java implementation to find the   ` `// minimum number of changes required  ` `// such that every path from top left   ` `// to the bottom right are palindromic  ` `// paths  ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG{ ` `     `  `static` `final` `int` `M = ``3``; ` `static` `final` `int` `N = ``3``;  ` ` `  `// Function to find the minimum number  ` `// of the changes required for the  ` `// every path to be palindromic ` `static` `int` `minchanges(``int``[][] mat) ` `{ ` `     `  `    ``// count variable for  ` `    ``// maintaining total changes. ` `    ``int` `count = ``0``; ` ` `  `    ``// left and right variables for  ` `    ``// keeping distance values ` `    ``// from cell(0, 0) and  ` `    ``// (N-1, M-1) respectively. ` `    ``int` `left = ``0``, right = N + M - ``2``; ` ` `  `    ``while` `(left < right) ` `    ``{ ` `        ``Map mp = ``new` `HashMap<>(); ` `             `  `        ``int` `totalsize = ``0``; ` ` `  `        ``// Iterating over the matrix ` `        ``for``(``int` `i = ``0``; i < N; i++)  ` `        ``{ ` `            ``for``(``int` `j = ``0``; j < M; j++)  ` `            ``{ ` `                ``if` `(i + j == left) ` `                ``{ ` `                    ``mp.put(mat[i][j],  ` `                           ``mp.getOrDefault( ` `                           ``mat[i][j], ``0``) + ``1``); ` `                    ``totalsize++; ` `                ``} ` `                ``else` `if` `(i + j == right) ` `                ``{ ` `                    ``mp.put(mat[i][j],  ` `                           ``mp.getOrDefault( ` `                           ``mat[i][j], ``0``) + ``1``); ` `                    ``totalsize++; ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``// Finding minimum number ` `        ``// of changes required. ` `        ``int` `changes = ``0``; ` `        ``for``(Map.Entry itr : mp.entrySet()) ` `            ``changes = Math.max(changes,  ` `                               ``itr.getValue()); ` ` `  `        ``// Minimum no. of changes will  ` `        ``// be the the minimum no. ` `        ``// of different values and  ` `        ``// we will assume to ` `        ``// make them equals to value  ` `        ``// with maximum frequency element ` `        ``count += totalsize - changes; ` `         `  `        ``// Moving ahead with ` `        ``// greater distance ` `        ``left++; ` `        ``right--; ` `    ``} ` `    ``return` `count; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `mat[][] = { { ``1``, ``4``, ``1` `}, ` `                    ``{ ``2``, ``5``, ``3` `}, ` `                    ``{ ``1``, ``3``, ``1` `} }; ` `     `  `    ``System.out.println(minchanges(mat)); ` `} ` `} ` ` `  `// This code is contributed by offbeat `

## Python3

 `#Python3 implementation to find the ` `#minimum number of changes required ` `#such that every path from top left ` `#to the bottom right ` `#are palindromic paths ` `M ``=` `3` `N ``=` `3` ` `  `#Function to find the minimum number ` `#of the changes required for the ` `#every path to be palindromic ` `def` `minchanges(mat): ` `    ``#count variable for ` `    ``#maintaining total changes. ` `    ``count ``=` `0` ` `  `    ``#left and right variables for ` `    ``#keeping distance values ` `    ``#from cell(0, 0) and ` `    ``#(N-1, M-1) respectively. ` `    ``left ``=` `0` `    ``right ``=` `N ``+` `M ``-` `2` ` `  `    ``while` `(left < right): ` `        ``mp``=``{} ` `        ``totalsize ``=` `0` ` `  `        ``#Iterating over the matrix ` `        ``for` `i ``in` `range``(N): ` `            ``for` `j ``in` `range``(M): ` `                ``if` `(i ``+` `j ``=``=` `left): ` `                    ``mp[mat[i][j]] ``=`  `                       ``mp.get(mat[i][j], ``0``) ``+` `1` `                    ``totalsize ``+``=` `1` `                ``elif` `(i ``+` `j ``=``=` `right): ` `                    ``mp[mat[i][j]] ``=`  `                       ``mp.get(mat[i][j], ``0``) ``+` `1` `                    ``totalsize ``+``=` `1` ` `  `        ``#Finding minimum number ` `        ``#of changes required. ` `        ``changes ``=` `0` `        ``for` `itr ``in` `mp: ` `            ``changes ``=` `max``(changes, mp[itr]) ` ` `  `        ``#Minimum no. of changes will ` `        ``#be the the minimum no. ` `        ``#of different values and ` `        ``#we will assume to ` `        ``#make them equals to value ` `        ``#with maximum frequency element ` `        ``count ``+``=` `totalsize ``-` `changes ` ` `  `        ``#Moving ahead with ` `        ``#greater distance ` `        ``left ``+``=` `1` `        ``right ``-``=` `1` `    ``return` `count ` ` `  `#Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``mat``=` `[[``1``, ``4``, ``1``], ` `          ``[``2``, ``5``, ``3``], ` `          ``[``1``, ``3``, ``1``]] ` `    ``print``(minchanges(mat)) ` ` `  `# This code is contributed by Mohit Kumar 29`

## C#

 `// C# implementation to find the  ` `// minimum number of changes required  ` `// such that every path from top left  ` `// to the bottom right are palindromic  ` `// paths  ` `using` `System; ` `using` `System.Collections;  ` `using` `System.Collections.Generic;  ` ` `  `class` `GFG{ ` `     `  `static` `int` `M = 3; ` `static` `int` `N = 3;  ` ` `  `// Function to find the minimum number  ` `// of the changes required for the  ` `// every path to be palindromic ` `static` `int` `minchanges(``int``[,] mat) ` `{ ` `     `  `    ``// count variable for  ` `    ``// maintaining total changes. ` `    ``int` `count = 0; ` ` `  `    ``// left and right variables for  ` `    ``// keeping distance values ` `    ``// from cell(0, 0) and  ` `    ``// (N-1, M-1) respectively. ` `    ``int` `left = 0, right = N + M - 2; ` ` `  `    ``while` `(left < right) ` `    ``{ ` `        ``Dictionary<``int``, ` `                   ``int``> mp = ``new` `Dictionary<``int``, ` `                                            ``int``>(); ` `        ``int` `totalsize = 0; ` ` `  `        ``// Iterating over the matrix ` `        ``for``(``int` `i = 0; i < N; i++)  ` `        ``{ ` `            ``for``(``int` `j = 0; j < M; j++)  ` `            ``{ ` `                ``if` `(i + j == left) ` `                ``{ ` `                    ``if``(mp.ContainsKey(mat[i, j])) ` `                    ``{ ` `                        ``mp[mat[i, j]]++;  ` `                    ``} ` `                    ``else` `                    ``{ ` `                        ``mp[mat[i, j]] = 1;  ` `                    ``} ` `                    ``totalsize++; ` `                ``} ` `                ``else` `if` `(i + j == right) ` `                ``{ ` `                    ``if``(mp.ContainsKey(mat[i, j])) ` `                    ``{ ` `                        ``mp[mat[i, j]]++;  ` `                    ``} ` `                    ``else` `                    ``{ ` `                        ``mp[mat[i, j]] = 1;  ` `                    ``} ` `                    ``totalsize++; ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``// Finding minimum number ` `        ``// of changes required. ` `        ``int` `changes = 0; ` `        ``foreach``(KeyValuePair<``int``, ``int``> itr ``in` `mp)  ` `        ``{  ` `            ``changes = Math.Max(changes,  ` `                               ``itr.Value);  ` `        ``}  ` `     `  `        ``// Minimum no. of changes will  ` `        ``// be the the minimum no. ` `        ``// of different values and  ` `        ``// we will assume to ` `        ``// make them equals to value  ` `        ``// with maximum frequency element ` `        ``count += totalsize - changes; ` `         `  `        ``// Moving ahead with ` `        ``// greater distance ` `        ``left++; ` `        ``right--; ` `    ``} ` `    ``return` `count; ` `} ` `     `  `// Driver Code ` `public` `static` `void` `Main(``string``[] args) ` `{ ` `    ``int` `[,]mat = { { 1, 4, 1 }, ` `                   ``{ 2, 5, 3 }, ` `                   ``{ 1, 3, 1 } }; ` ` `  `    ``Console.Write(minchanges(mat)); ` `} ` `} ` ` `  `// This code is contributed by rutvik_56 `

Output:

```2
```

Performance Analysis:

• Time Complexity: O(N3)
• Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.