Print all palindromic paths from top left to bottom right in a matrix

Given a matrix containing lower alphabetical characters only, we need to print all palindromic paths in given matrix. A path is defined as a sequence of cells starting from top-left cell and ending at bottom-right cell. We are allowed to move to right and down only from current cell. We cannot go down diagonally.
Example:

Input : mat[][] = {"aaab”, 
                   "baaa”
                   “abba”}
Output :aaaaaa, aaaaaa, abaaba

Explanation :
aaaaaa (0, 0) -> (0, 1) -> (1, 1) -> 
       (1, 2) -> (1, 3) -> (2, 3)    
aaaaaa (0, 0) -> (0, 1) -> (0, 2) -> 
       (1, 2) -> (1, 3) -> (2, 3)    
abaaba (0, 0) -> (1, 0) -> (1, 1) -> 
       (1, 2) -> (2, 2) -> (2, 3)

Order of elements in the output array doesn’t matter.



The idea is simple. We start from top left (0, 0) and explore all paths to bottom right. If a path turns to be palindrome, we print it.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print all palindromic paths
// from top left to bottom right in a grid.
#include<bits/stdc++.h>
using namespace std;
#define N 4
bool isPalin(string str)
{
    int len = str.length() / 2;
    for (int i = 0; i < len; i++) 
    {
        if (str[i] != str[str.length() - i - 1])
            return false;
    }
    return true;
}
  
// i and j are row and column indexes of current cell 
// (initially these are 0 and 0).
void palindromicPath(string str, char a[][N],
                            int i, int j, int m, int n)
{
          
    // If we have not reached bottom right corner, keep
    // exlporing
    if (j < m - 1 || i < n - 1) 
    {
        if (i < n - 1)
            palindromicPath(str + a[i][j], a, i + 1, j, m, n);
        if (j < m - 1)
            palindromicPath(str + a[i][j], a, i, j + 1, m, n);
    
  
    // If we reach bottom right corner, we check if
    // if the path used is palindrome or not.
    else {
        str = str + a[n - 1][m - 1];
        if (isPalin(str))
            cout<<(str)<<endl;
    }
}
  
// Driver code 
int main()
{
    char arr[][N] = { { 'a', 'a', 'a', 'b' },
                    { 'b', 'a', 'a', 'a' },
                    { 'a', 'b', 'b', 'a' } };
    string str = "";
    palindromicPath(str, arr, 0, 0, 4, 3);
    return 0;
}
  
// This code is contributed by andrew1234

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print all palindromic paths
// from top left to bottom right in a grid.
public class PalinPath {
    public static boolean isPalin(String str)
    {
        int len = str.length() / 2;
        for (int i = 0; i < len; i++) {
            if (str.charAt(i) != str.charAt(str.length() - i - 1))
                return false;
        }
        return true;
    }
  
    // i and j are row and column indexes of current cell 
    // (initially these are 0 and 0).
    public static void palindromicPath(String str, char a[][],
                                 int i, int j, int m, int n)
    {
            
        // If we have not reached bottom right corner, keep
        // exlporing
        if (j < m - 1 || i < n - 1) {
          if (i < n - 1)
             palindromicPath(str + a[i][j], a, i + 1, j, m, n);
         if (j < m - 1)
             palindromicPath(str + a[i][j], a, i, j + 1, m, n);
        
  
        // If we reach bottom right corner, we check if
        // if the path used is palindrome or not.
        else {
            str = str + a[n - 1][m - 1];
            if (isPalin(str))
                System.out.println(str);
        }
    }
  
    // Driver code 
    public static void main(String args[])
    {
        char arr[][] = { { 'a', 'a', 'a', 'b' },
                         { 'b', 'a', 'a', 'a' },
                         { 'a', 'b', 'b', 'a' } };
        String str = "";
        palindromicPath(str, arr, 0, 0, 4, 3);
    }
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to print all 
# palindromic paths from top left
# to bottom right in a grid.
  
def isPalin(str):
  
    l = len(str) // 2
    for i in range( l) :
        if (str[i] != str[len(str) - i - 1]):
            return False
          
    return True
  
# i and j are row and column 
# indexes of current cell 
# (initially these are 0 and 0).
def palindromicPath(str, a, i, j, m, n):
          
    # If we have not reached bottom 
    # right corner, keep exlporing
    if (j < m - 1 or i < n - 1) :
        if (i < n - 1):
            palindromicPath(str + a[i][j], a, 
                            i + 1, j, m, n)
        if (j < m - 1):
            palindromicPath(str + a[i][j], a, 
                            i, j + 1, m, n) 
  
    # If we reach bottom right corner, 
    # we check if the path used is
    # palindrome or not.
    else :
        str = str + a[n - 1][m - 1]
        if isPalin(str):
            print(str)
  
# Driver code 
if __name__ == "__main__":
      
    arr = [[ 'a', 'a', 'a', 'b' ],
           ['b', 'a', 'a', 'a' ],
           [ 'a', 'b', 'b', 'a' ]]
    str = ""
    palindromicPath(str, arr, 0, 0, 4, 3)
  
# This code is contributed 
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print all palindromic paths 
// from top left to bottom right in a grid. 
using System;
  
class GFG
{
public static bool isPalin(string str)
{
    int len = str.Length / 2;
    for (int i = 0; i < len; i++)
    {
        if (str[i] != str[str.Length - i - 1])
        {
            return false;
        }
    }
    return true;
}
  
// i and j are row and column indexes of 
// current cell (initially these are 0 and 0). 
public static void palindromicPath(string str, char[][] a, 
                                   int i, int j, int m, int n)
{
  
    // If we have not reached bottom 
    // right corner, keep exlporing 
    if (j < m - 1 || i < n - 1)
    {
    if (i < n - 1)
    {
        palindromicPath(str + a[i][j],
                        a, i + 1, j, m, n);
    }
    if (j < m - 1)
    {
        palindromicPath(str + a[i][j],
                        a, i, j + 1, m, n);
    }
    }
  
    // If we reach bottom right corner,
    // we check if the path used is
    // palindrome or not. 
    else
    {
        str = str + a[n - 1][m - 1];
        if (isPalin(str))
        {
            Console.WriteLine(str);
        }
    }
}
  
// Driver code 
public static void Main(string[] args)
{
    char[][] arr = new char[][]
    {
        new char[] {'a', 'a', 'a', 'b'},
        new char[] {'b', 'a', 'a', 'a'},
        new char[] {'a', 'b', 'b', 'a'}
    };
    string str = "";
    palindromicPath(str, arr, 0, 0, 4, 3);
}
}
  
// This code is contributed by Shrikant13

chevron_right



Output :

abaaba
aaaaaa
aaaaaa

This article is contributed by Haribalaji R. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : shrikanth13, Ita_c, andrew1234



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.