Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum steps to change arr[K] to 0 by decrementing arr[0] and shifting to end repeatedly

  • Last Updated : 09 Mar, 2022

Given an array arr[] of size N and an integer representing an index K, the task is to find the minimum number of operations in which arr[K] becomes 0. In one operation, the value of the first array element decreases by 1 and goes to the end of the array. If at any time, arr[i] becomes 0, then it is removed from the array and the operations are performed on the remaining elements.

Examples:

Input:  arr[] = {2, 3, 2}, K = 2
Output: 6
Explanation: For the first input,  
After iteration-1, the array changes to [1, 2, 1]. Steps taken = 3 steps
After iteration-2, the array changes to [0, 1, 0]. Steps taken = 3 steps
Hence, for the element at index 2, it took 6 steps to become 0.

Input:  arr[] = {5, 1, 1, 1}, K = 0
Output: 8

 

Approach: The idea is to keep traversing the array and decrease the value of arr[i] when it’s greater than 0 and calculate the answer. Follow the steps below to solve the problem:

  • Initialize the variable time as 0 to store the answer.
  • Traverse in a while loop till arr[k] is not 0 and perform the following tasks:
    • Iterate over the range [0, N) using the variable i and perform the following tasks:
      • If arr[i] is greater than 0, then reduce the value of arr[i] by 1, then increase the value of time by 1.
      • If arr[k] becomes 0, then break.
  • After performing the above steps, print the value of time as the answer.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of steps
void findMinimumNumberOfSteps(vector<int> arr,
                              int K)
{
 
    // Variable to store the answer
    int time = 0;
 
    // Traverse in the while loop
    while (arr[K] != 0) {
 
        // Iterate over the loop
        for (int i = 0; i < arr.size(); i++) {
 
            // Check the condition and
            // decrease the value
            if (arr[i] > 0) {
                arr[i] -= 1;
                time++;
            }
 
            // Break the loop
            if (arr[K] == 0)
                break;
        }
    }
 
    // Print the result
    cout << time;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 2, 3, 2 };
    int K = 2;
    findMinimumNumberOfSteps(arr, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to find the minimum number
  // of steps
  static void findMinimumNumberOfSteps(int arr[],
                                       int K)
  {
 
    // Variable to store the answer
    int time = 0;
 
    // Traverse in the while loop
    while (arr[K] != 0) {
 
      // Iterate over the loop
      for (int i = 0; i < arr.length; i++) {
 
        // Check the condition and
        // decrease the value
        if (arr[i] > 0) {
          arr[i] -= 1;
          time++;
        }
 
        // Break the loop
        if (arr[K] == 0)
          break;
      }
    }
 
    // Print the result
    System.out.println(time);
  }
 
  // Driver Code
  public static void main (String[] args) {
    int arr[] = { 2, 3, 2 };
    int K = 2;
    findMinimumNumberOfSteps(arr, K);
  }
}
 
// This code is contributed by hrithikgarg03188.

Python3




# Python program to implement
# the above approach
 
# Function to find the minimum number
# of steps
def findMinimumNumberOfSteps(arr, K) :
 
    # Variable to store the answer
    time = 0
 
    # Traverse in the while loop
    while (arr[K] != 0) :
 
        # Iterate over the loop
        for i in range(0, len(arr)) :
             
            # Check the condition and
            # decrease the value
            if (arr[i] > 0) :
                arr[i] -= 1
                time += 1
             
 
            # Break the loop
            if (arr[K] == 0):
                break
 
    # Print the result
    print(time)
 
# Driver Code
arr = [ 2, 3, 2 ]
K = 2
findMinimumNumberOfSteps(arr, K)
 
# This code is contributed by sanjoy_62.

C#




// C# program for the above approach
using System;
class GFG {
 
  // Function to find the minimum number
  // of steps
  static void findMinimumNumberOfSteps(int []arr,
                                       int K)
  {
 
    // Variable to store the answer
    int time = 0;
 
    // Traverse in the while loop
    while (arr[K] != 0) {
 
      // Iterate over the loop
      for (int i = 0; i < arr.Length; i++) {
 
        // Check the condition and
        // decrease the value
        if (arr[i] > 0) {
          arr[i] -= 1;
          time++;
        }
 
        // Break the loop
        if (arr[K] == 0)
          break;
      }
    }
 
    // Print the result
    Console.WriteLine(time);
  }
 
  // Driver Code
  public static void Main () {
    int []arr = { 2, 3, 2 };
    int K = 2;
    findMinimumNumberOfSteps(arr, K);
  }
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the minimum number
       // of steps
       function findMinimumNumberOfSteps(arr,
           K) {
 
           // Variable to store the answer
           let time = 0;
 
           // Traverse in the while loop
           while (arr[K] != 0) {
 
               // Iterate over the loop
               for (let i = 0; i < arr.length; i++) {
 
                   // Check the condition and
                   // decrease the value
                   if (arr[i] > 0) {
                       arr[i] -= 1;
                       time++;
                   }
 
                   // Break the loop
                   if (arr[K] == 0)
                       break;
               }
           }
 
           // Print the result
           document.write(time);
       }
 
       // Driver Code
 
       let arr = [2, 3, 2];
       let K = 2;
       findMinimumNumberOfSteps(arr, K);
 
 
      // This code is contributed by Potta Lokesh
   </script>

 
 

Output
6

 

Time Complexity: O(N*X), where X is the value of arr[K]
Auxiliary Space: O(1) 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!