# Minimum steps required to rearrange given array to a power sequence of 2

• Last Updated : 05 May, 2021

Given an array arr[] consisting of N positive integers, the task is to find the minimum steps required to make the given array of integers into a sequence of powers of 2 by the following operations:

• Reorder the given array. It doesn’t count as a step.
• For each step, select any index i from the array and change arr[i] to arr[i] − 1 or arr[i] + 1.

A sequence is called power sequence of 2, if for every ith index (0 ≤i ≤ N − 1)
arr[i] = 2i , where N is length of the given array.

Examples:

Input: arr[] = { 1, 8, 2, 10, 6 }
Output: 8
Explanation:
Reorder the array arr[] to { 1, 2, 6, 8, 10 }
Step 1: Decrement arr to 5
Step 2: Decrement arr to 4
Step 3 – 8: Increment arr by 1. Final value of arr becomes 16.
Therefore, arr[] = {1, 2, 4, 8, 16}
Hence, the minimum number of steps required to obtain the power sequence of 2 is 8.

Input: arr[] = { 1, 3, 4 }
Output: 1

Approach: To solve the given problem, the idea is to sort the array in ascending order  and for every ith index of the sorted array, calculate the absolute difference between arr[i]  and 2i. The sum of the absolute differences gives us the required answer.

Below is the implementation of the above approach:

## C++

 `// C++ program to implement``// the above approach` `#include ``using` `namespace` `std;` `// Function to calculate the minimum``// steps required to convert given``// array into a power sequence of 2``int` `minsteps(``int` `arr[], ``int` `n)``{` `    ``// Sort the array in``    ``// ascending order``    ``sort(arr, arr + n);` `    ``int` `ans = 0;` `    ``// Calculate the absolute difference``    ``// between arr[i] and 2^i for each index``    ``for` `(``int` `i = 0; i < n; i++) {``        ``ans += ``abs``(arr[i] - ``pow``(2, i));``    ``}` `    ``// Return the answer``    ``return` `ans;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 1, 8, 2, 10, 6 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``cout << minsteps(arr, n) << endl;``    ``return` `0;``}`

## Java

 `// Java Program to implement``// the above approach` `import` `java.util.*;``import` `java.lang.Math;` `class` `GFG {` `    ``// Function to calculate the minimum``    ``// steps required to convert given``    ``// array into a power sequence of 2``    ``static` `int` `minsteps(``int` `arr[], ``int` `n)``    ``{``        ``// Sort the array in ascending order``        ``Arrays.sort(arr);``        ``int` `ans = ``0``;` `        ``// Calculate the absolute difference``        ``// between arr[i] and 2^i for each index``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``ans += Math.abs(arr[i] - Math.pow(``2``, i));``        ``}``        ``return` `ans;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``1``, ``8``, ``2``, ``10``, ``6` `};``        ``int` `n = arr.length;``        ``System.out.println(minsteps(arr, n));``    ``}``}`

## Python3

 `# Python 3 program for the above approach` `# Function to calculate the minimum``# steps required to convert given``# array into a power sequence of 2``def` `minsteps(arr, n):` `    ``# Sort the array in ascending order``    ``arr.sort()``    ``ans ``=` `0``    ``for` `i ``in` `range``(n):``        ``ans ``+``=` `abs``(arr[i]``-``pow``(``2``, i))``    ``return` `ans`  `# Driver Code``arr ``=` `[``1``, ``8``, ``2``, ``10``, ``6``]``n ``=` `len``(arr)``print``(minsteps(arr, n))`

## C#

 `// C# Program to the above approach` `using` `System;` `class` `GFG {` `    ``// Function to calculate the minimum``    ``// steps required to convert given``    ``// array into a power sequence of 2``    ``static` `int` `minsteps(``int``[] arr, ``int` `n)``    ``{` `        ``// Sort the array in ascending order``        ``Array.Sort(arr);``        ``int` `ans = 0;` `        ``// Calculate the absolute difference``        ``// between arr[i] and 2^i for each index``        ``for` `(``int` `i = 0; i < n; i++) {``            ``ans += Math.Abs(arr[i]``                            ``- (``int``)(Math.Pow(2, i)));``        ``}``        ``return` `ans;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{` `        ``int``[] arr = { 1, 8, 2, 10, 6 };``        ``int` `n = arr.Length;``        ``Console.WriteLine(minsteps(arr, n));``    ``}``}`

## Javascript

 ``

Output:

`8`

Time Complexity: O(NlogN)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up