Skip to content
Related Articles

Related Articles

Minimum steps required to rearrange given array to a power sequence of 2

View Discussion
Improve Article
Save Article
  • Last Updated : 05 May, 2021
View Discussion
Improve Article
Save Article

Given an array arr[] consisting of N positive integers, the task is to find the minimum steps required to make the given array of integers into a sequence of powers of 2 by the following operations:

  • Reorder the given array. It doesn’t count as a step.
  • For each step, select any index i from the array and change arr[i] to arr[i] − 1 or arr[i] + 1.

 A sequence is called power sequence of 2, if for every ith index (0 ≤i ≤ N − 1)
arr[i] = 2i , where N is length of the given array.

Examples:

Input: arr[] = { 1, 8, 2, 10, 6 }
Output: 8
Explanation: 
Reorder the array arr[] to { 1, 2, 6, 8, 10 }
Step 1: Decrement arr[2] to 5
Step 2: Decrement arr[2] to 4
Step 3 – 8: Increment arr[4] by 1. Final value of arr[4] becomes 16.
Therefore, arr[] = {1, 2, 4, 8, 16}
Hence, the minimum number of steps required to obtain the power sequence of 2 is 8.

Input: arr[] = { 1, 3, 4 }
Output: 1

Approach: To solve the given problem, the idea is to sort the array in ascending order  and for every ith index of the sorted array, calculate the absolute difference between arr[i]  and 2i. The sum of the absolute differences gives us the required answer.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the minimum
// steps required to convert given
// array into a power sequence of 2
int minsteps(int arr[], int n)
{
 
    // Sort the array in
    // ascending order
    sort(arr, arr + n);
 
    int ans = 0;
 
    // Calculate the absolute difference
    // between arr[i] and 2^i for each index
    for (int i = 0; i < n; i++) {
        ans += abs(arr[i] - pow(2, i));
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 8, 2, 10, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << minsteps(arr, n) << endl;
    return 0;
}

Java




// Java Program to implement
// the above approach
 
import java.util.*;
import java.lang.Math;
 
class GFG {
 
    // Function to calculate the minimum
    // steps required to convert given
    // array into a power sequence of 2
    static int minsteps(int arr[], int n)
    {
        // Sort the array in ascending order
        Arrays.sort(arr);
        int ans = 0;
 
        // Calculate the absolute difference
        // between arr[i] and 2^i for each index
        for (int i = 0; i < n; i++) {
            ans += Math.abs(arr[i] - Math.pow(2, i));
        }
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 1, 8, 2, 10, 6 };
        int n = arr.length;
        System.out.println(minsteps(arr, n));
    }
}

Python3




# Python 3 program for the above approach
 
# Function to calculate the minimum
# steps required to convert given
# array into a power sequence of 2
def minsteps(arr, n):
 
    # Sort the array in ascending order
    arr.sort()
    ans = 0
    for i in range(n):
        ans += abs(arr[i]-pow(2, i))
    return ans
 
 
# Driver Code
arr = [1, 8, 2, 10, 6]
n = len(arr)
print(minsteps(arr, n))

C#




// C# Program to the above approach
 
using System;
 
class GFG {
 
    // Function to calculate the minimum
    // steps required to convert given
    // array into a power sequence of 2
    static int minsteps(int[] arr, int n)
    {
 
        // Sort the array in ascending order
        Array.Sort(arr);
        int ans = 0;
 
        // Calculate the absolute difference
        // between arr[i] and 2^i for each index
        for (int i = 0; i < n; i++) {
            ans += Math.Abs(arr[i]
                            - (int)(Math.Pow(2, i)));
        }
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
 
        int[] arr = { 1, 8, 2, 10, 6 };
        int n = arr.Length;
        Console.WriteLine(minsteps(arr, n));
    }
}

Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to calculate the minimum
// steps required to convert given
// array into a power sequence of 2
function minsteps(arr, n)
{
 
    // Sort the array in
    // ascending order
    arr.sort((a,b)=>a-b)
 
    var ans = 0;
 
    // Calculate the absolute difference
    // between arr[i] and 2^i for each index
    for (var i = 0; i < n; i++) {
        ans += Math.abs(arr[i] - Math.pow(2, i));
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
var arr = [ 1, 8, 2, 10, 6 ];
var n = arr.length;
document.write( minsteps(arr, n));
 
// This code is contributed by noob2000.
</script>

 
 

Output: 

8

 

 

Time Complexity: O(NlogN)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!