Minimum steps required to convert X to Y where a binary matrix represents the possible conversions

Given a binary matrix of size NxN where 1 denotes that the number i can be converted to j, and 0 denotes it cannot be converted to. Also given are two numbers X(<N)and Y(<N), the task is to find the minimum number of steps required to convert the number X to Y. If there is no such way possible, print -1.

Examples:

Input: 
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}

X = 2, Y = 3 
Output: 2 
Convert 2 -> 4 -> 3, which is the minimum way possible. 

Input:
{{ 0, 0, 0, 0}
{ 0, 0, 0, 1}
{ 0, 0, 0, 0}
{ 0, 1, 0, 0}}

X = 1, Y = 2
Output: -1 


Approach: This problem is a variant of Floyd-warshall algorithm where there is an edge of weight 1 between i and j i.e. mat[i][j]==1, else they don’t have an edge and we can assign edges as infinity as we do in Floyd-Warshall. Find the solution matrix and return dp[i][j] if it is not infinite. Return -1 if it is infinite which means there is no path possible between them.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
#define INF 99999
#define size 10
  
int findMinimumSteps(int mat[size][size], int x, int y, int n)
{
    // dist[][] will be the output matrix that
    // will finally have the shortest
    // distances between every pair of numbers
    int dist[n][n], i, j, k;
  
    // Initially same as mat
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            if (mat[i][j] == 0)
                dist[i][j] = INF;
            else
                dist[i][j] = 1;
  
            if (i == j)
                dist[i][j] = 1;
        }
    }
  
    // Add all numbers one by one to the set
    // of intermediate numbers. Before start of 
    // an iteration, we have shortest distances 
    // between all pairs of numbers such that the 
    // shortest distances consider only the numbers 
    // in set {0, 1, 2, .. k-1} as intermediate numbers.
    // After the end of an iteration, vertex no. k is 
    // added to the set of intermediate numbers and 
    // the set becomes {0, 1, 2, .. k}
    for (k = 0; k < n; k++) {
  
        // Pick all numbers as source one by one
        for (i = 0; i < n; i++) {
  
            // Pick all numbers as destination for the
            // above picked source
            for (j = 0; j < n; j++) {
  
                // If number k is on the shortest path from
                // i to j, then update the value of dist[i][j]
                if (dist[i][k] + dist[k][j] < dist[i][j])
                    dist[i][j] = dist[i][k] + dist[k][j];
            }
        }
    }
  
    // If no path
    if (dist[x][y] < INF)
        return dist[x][y];
    else
        return -1;
}
  
// Driver Code
int main()
{
  
    int mat[size][size] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
                            { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } };
  
    int x = 2, y = 3;
  
    cout << findMinimumSteps(mat, x, y, size);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
  
class GFG
{
      
    static int INF=99999;
      
    static int findMinimumSteps(int mat[][], int x, int y, int n)
    {
        // dist[][] will be the output matrix that
        // will finally have the shortest
        // distances between every pair of numbers
        int i, j, k;
        int [][] dist= new int[n][n]; 
      
        // Initially same as mat
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                if (mat[i][j] == 0)
                    dist[i][j] = INF;
                else
                    dist[i][j] = 1;
      
                if (i == j)
                    dist[i][j] = 1;
            }
        }
      
        // Add all numbers one by one to the set
        // of intermediate numbers. Before start of 
        // an iteration, we have shortest distances 
        // between all pairs of numbers such that the 
        // shortest distances consider only the numbers 
        // in set {0, 1, 2, .. k-1} as intermediate numbers.
        // After the end of an iteration, vertex no. k is 
        // added to the set of intermediate numbers and 
        // the set becomes {0, 1, 2, .. k}
        for (k = 0; k < n; k++) {
      
            // Pick all numbers as source one by one
            for (i = 0; i < n; i++) {
      
                // Pick all numbers as destination for the
                // above picked source
                for (j = 0; j < n; j++) {
      
                    // If number k is on the shortest path from
                    // i to j, then update the value of dist[i][j]
                    if (dist[i][k] + dist[k][j] < dist[i][j])
                        dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
      
        // If no path
        if (dist[x][y] < INF)
            return dist[x][y];
        else
            return -1;
    }
      
    // Driver Code
    public static void main(String []args)
    {
      
        int [][] mat =  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
                        { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } };
      
        int x = 2, y = 3;
        int size=mat.length;
          
        System.out.println( findMinimumSteps(mat, x, y, size));
    }
  
}
  
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Pyton3 implementation of the above approach
  
INF = 99999
size = 10
  
def findMinimumSteps(mat, x, y, n):
  
    # dist[][] will be the output matrix 
    # that will finally have the shortest
    # distances between every pair of numbers
    dist = [[0 for i in range(n)] 
               for i in range(n)]
    i, j, k = 0, 0, 0
  
    # Initially same as mat
    for i in range(n):
        for j in range(n):
            if (mat[i][j] == 0):
                dist[i][j] = INF
            else:
                dist[i][j] = 1
  
            if (i == j):
                dist[i][j] = 1
          
    # Add all numbers one by one to the set
    # of intermediate numbers. Before start 
    # of an iteration, we have shortest distances 
    # between all pairs of numbers such that the 
    # shortest distances consider only the numbers 
    # in set {0, 1, 2, .. k-1} as intermediate 
    # numbers. After the end of an iteration, vertex 
    # no. k is added to the set of intermediate 
    # numbers and the set becomes {0, 1, 2, .. k}
    for k in range(n):
  
        # Pick all numbers as source one by one
        for i in range(n):
  
            # Pick all numbers as destination 
            # for the above picked source
            for j in range(n):
  
                # If number k is on the shortest path from
                # i to j, then update the value of dist[i][j]
                if (dist[i][k] + dist[k][j] < dist[i][j]):
                    dist[i][j] = dist[i][k] + dist[k][j]
  
    # If no path
    if (dist[x][y] < INF):
        return dist[x][y]
    else:
        return -1
  
# Driver Code
mat = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ],
       [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]]
  
x, y = 2, 3
  
print(findMinimumSteps(mat, x, y, size))
  
# This code is contributed by Mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
  
using System;
class GFG 
      
    static int INF=99999; 
      
    static int findMinimumSteps(int [,]mat, int x, int y, int n) 
    
        // dist[][] will be the output matrix that 
        // will finally have the shortest 
        // distances between every pair of numbers 
        int i, j, k; 
        int [,] dist= new int[n,n]; 
      
        // Initially same as mat 
        for (i = 0; i < n; i++) { 
            for (j = 0; j < n; j++) { 
                if (mat[i,j] == 0) 
                    dist[i,j] = INF; 
                else
                    dist[i,j] = 1; 
      
                if (i == j) 
                    dist[i,j] = 1; 
            
        
      
        // Add all numbers one by one to the set 
        // of intermediate numbers. Before start of 
        // an iteration, we have shortest distances 
        // between all pairs of numbers such that the 
        // shortest distances consider only the numbers 
        // in set {0, 1, 2, .. k-1} as intermediate numbers. 
        // After the end of an iteration, vertex no. k is 
        // added to the set of intermediate numbers and 
        // the set becomes {0, 1, 2, .. k} 
        for (k = 0; k < n; k++) { 
      
            // Pick all numbers as source one by one 
            for (i = 0; i < n; i++) { 
      
                // Pick all numbers as destination for the 
                // above picked source 
                for (j = 0; j < n; j++) { 
      
                    // If number k is on the shortest path from 
                    // i to j, then update the value of dist[i][j] 
                    if (dist[i,k] + dist[k,j] < dist[i,j]) 
                        dist[i,j] = dist[i,k] + dist[k,j]; 
                
            
        
      
        // If no path 
        if (dist[x,y] < INF) 
            return dist[x,y]; 
        else
            return -1; 
    
      
    // Driver Code 
    public static void Main() 
    
      
        int [,] mat = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, 
                        { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, 
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } }; 
      
        int x = 2, y = 3; 
        int size = mat.GetLength(0) ;
          
        Console.WriteLine( findMinimumSteps(mat, x, y, size)); 
    
    // This code is contributed by Ryuga

chevron_right


Output:

2


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ihritik, mohit kumar 29, Ryuga