Open In App
Related Articles

Minimum spanning tree cost of given Graphs

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an undirected graph of V nodes (V > 2) named V1, V2, V3, …, Vn. Two nodes Vi and Vj are connected to each other if and only if 0 < | i – j | ? 2. Each edge between any vertex pair (Vi, Vj) is assigned a weight i + j. The task is to find the cost of the minimum spanning tree of such graph with V nodes.

Examples: 
 

Input: V = 4 
 

Output: 13

Input: V = 5 
Output: 21 

Approach: 

Starting with a graph with minimum nodes (i.e. 3 nodes), the cost of the minimum spanning tree will be 7. Now for every node i starting from the fourth node which can be added to this graph, ith node can only be connected to (i – 1)th and (i – 2)th node and the minimum spanning tree will only include the node with the minimum weight so the newly added edge will have the weight i + (i – 2)

So addition of fourth node will increase the overall weight as 7 + (4 + 2) = 13 
Similarly adding fifth node, weight = 13 + (5 + 3) = 21 
… 
For nth node, weight = weight + (n + (n – 2))

This can be generalized as weight = V2 – V + 1 where V is the total nodes in the graph.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the minimum cost
// of the spanning tree for the required graph
int getMinCost(int Vertices)
{
    int cost = 0;
 
    // Calculating cost of MST
    cost = (Vertices * Vertices) - Vertices + 1;
 
    return cost;
}
 
// Driver code
int main()
{
    int V = 5;
    cout << getMinCost(V);
 
    return 0;
}


Java




// Java implementation of the approach
class GfG
{
 
// Function that returns the minimum cost
// of the spanning tree for the required graph
static int getMinCost(int Vertices)
{
    int cost = 0;
 
    // Calculating cost of MST
    cost = (Vertices * Vertices) - Vertices + 1;
 
    return cost;
}
 
// Driver code
public static void main(String[] args)
{
    int V = 5;
    System.out.println(getMinCost(V));
}
}
 
// This code is contributed by
// Prerna Saini.


C#




// C# implementation of the above approach
using System;
 
class GfG
{
 
    // Function that returns the minimum cost
    // of the spanning tree for the required graph
    static int getMinCost(int Vertices)
    {
        int cost = 0;
     
        // Calculating cost of MST
        cost = (Vertices * Vertices) - Vertices + 1;
     
        return cost;
    }
     
    // Driver code
    public static void Main()
    {
        int V = 5;
        Console.WriteLine(getMinCost(V));
    }
}
 
// This code is contributed by Ryuga


Python3




# python3 implementation of the approach
  
# Function that returns the minimum cost
# of the spanning tree for the required graph
def getMinCost( Vertices):
    cost = 0
  
    # Calculating cost of MST
    cost = (Vertices * Vertices) - Vertices + 1
  
    return cost
  
# Driver code
if __name__ == "__main__":
 
    V = 5
    print (getMinCost(V))


PHP




<?php
// PHP implementation of the approach
// Function that returns the minimum cost
// of the spanning tree for the required graph
function getMinCost($Vertices)
{
    $cost = 0;
 
    // Calculating cost of MST
    $cost = ($Vertices * $Vertices) - $Vertices + 1;
 
    return $cost;
}
 
// Driver code
$V = 5;
echo getMinCost($V);
 
#This Code is contributed by ajit..
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns the minimum cost
// of the spanning tree for the required graph
function getMinCost(Vertices)
{
    var cost = 0;
 
    // Calculating cost of MST
    cost = (Vertices * Vertices) - Vertices + 1;
 
    return cost;
}
 
// Driver code
var V = 5;
document.write( getMinCost(V));
 
// This code is contributed by rrrtnx.
</script>


Output

21

Complexity Analysis:

  • Time Complexity: O(1)
  • Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 15 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials