Minimum spanning tree cost of given Graphs

Given an undirected graph of V nodes (V > 2) named V1, V2, V3, …, Vn. Two nodes Vi and Vj are connected to each other if and only if 0 < | i – j | ≤ 2. Each edge between any vertex pair (Vi, Vj) is assigned a weight i + j. The task is to find the cost of the minimum spanning tree of such graph with V nodes.

Examples:

Input: V = 4

Output: 13

Input: V = 5
Output: 21



Approach: Starting with a graph with minimum nodes (i.e. 3 nodes), the cost of the minimum spanning tree will be 7. Now for every node i starting from the fourth node which can be added to this graph, ith node can only be connected to (i – 1)th and (i – 2)th node and the minimum spanning tree will only include the node with the minimum weight so the newly added edge will have the weight i + (i – 2).

So addition of fourth node will increase the overall weight as 7 + (4 + 2) = 13
Similarly adding fifth node, weight = 13 + (5 + 3) = 21

For nth node, weight = weight + (n + (n – 2)).

This can be generalized as weight = V2 – V + 1 where V is the total nodes in the graph.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns the minimum cost
// of the spanning tree for the required graph
int getMinCost(int Vertices)
{
    int cost = 0;
  
    // Calculating cost of MST
    cost = (Vertices * Vertices) - Vertices + 1;
  
    return cost;
}
  
// Driver code
int main()
{
    int V = 5;
    cout << getMinCost(V);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
class GfG 
  
// Function that returns the minimum cost 
// of the spanning tree for the required graph 
static int getMinCost(int Vertices) 
    int cost = 0
  
    // Calculating cost of MST 
    cost = (Vertices * Vertices) - Vertices + 1
  
    return cost; 
  
// Driver code 
public static void main(String[] args) 
    int V = 5
    System.out.println(getMinCost(V)); 
}
  
// This code is contributed by 
// Prerna Saini.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System;
  
class GfG 
  
    // Function that returns the minimum cost 
    // of the spanning tree for the required graph 
    static int getMinCost(int Vertices) 
    
        int cost = 0; 
      
        // Calculating cost of MST 
        cost = (Vertices * Vertices) - Vertices + 1; 
      
        return cost; 
    
      
    // Driver code 
    public static void Main() 
    
        int V = 5; 
        Console.WriteLine(getMinCost(V)); 
    }
  
// This code is contributed by Ryuga

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# python3 implementation of the approach
   
# Function that returns the minimum cost
# of the spanning tree for the required graph
def getMinCost( Vertices):
    cost = 0
   
    # Calculating cost of MST
    cost = (Vertices * Vertices) - Vertices + 1
   
    return cost
   
# Driver code
if __name__ == "__main__":
  
    V = 5
    print (getMinCost(V))
  

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
// Function that returns the minimum cost
// of the spanning tree for the required graph
function getMinCost($Vertices)
{
    $cost = 0;
  
    // Calculating cost of MST
    $cost = ($Vertices * $Vertices) - $Vertices + 1;
  
    return $cost;
}
  
// Driver code
$V = 5;
echo getMinCost($V);
  
#This Code is contributed by ajit..
?>

chevron_right


Output:

21


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : prerna saini, Ryuga, jit_t, Ita_c