Minimum number of pairs required to make two strings same
Given two strings s1 and s2 of same length, the task is to count the minimum number of pairs of characters (c1, c2) such that by transforming c1 to c2 or c2 to c1 any number of times in any string make both the strings same. Examples:
Input: s1 = “abb”, s2 = “dad” Output: 2 Transform ‘a’ -> ‘d’, ‘b’ -> ‘a’ and ‘b’ -> ‘a’ -> ‘d’ in s1. We can not take (a, d), (b, a), (b, d) as pairs because (b, d) can be achieved by following transformation ‘b’ -> ‘a’ -> ‘d’ Input: s1 = “drpepper”, s2 = “cocacola” Output: 7
Approach: This Problem can be solved by using Graphs or Disjoint Sets. Build an empty graph G and iterate through the strings. Add an edge in graph G only if one of the following conditions is met:
- Both s1[i] and s2[i] are not in G.
- s1[i] is in G but s2[i] is not in G.
- s2[i] is in G but s1[i] is not in G.
- There is no path from s1[i] to s2[i].
The minimum number of pairs will be the count of edges in the final graph G. Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function which will check if there is // a path between a and b by using BFS bool checkPath( char a, char b, map< char , vector< char >> &G) { map< char , bool > visited; deque< char > queue; queue.push_back(a); visited[a] = true ; while (!queue.empty()) { int n = queue.front(); queue.pop_front(); if (n == b) return true ; for ( auto i : G[n]) { if (visited[i] == false ) { queue.push_back(i); visited[i] = true ; } } } return false ; } // Function to return the // minimum number of pairs int countPairs(string s1, string s2, map< char , vector< char >> &G, int x) { // To store the count of pairs int count = 0; // Iterating through the strings for ( int i = 0; i < x; i++) { char a = s1[i]; char b = s2[i]; // Check if we can add an edge in the graph if (G.find(a) != G.end() and G.find(b) == G.end() and a != b) { G[a].push_back(b); G[b].push_back(a); count++; } else if (G.find(b) != G.end() and G.find(a) == G.end() and a != b) { G[b].push_back(a); G[a].push_back(b); count++; } else if (G.find(a) == G.end() and G.find(b) == G.end() and a != b) { G[a].push_back(b); G[b].push_back(a); count++; } else { if (!checkPath(a, b, G) and a != b) { G[a].push_back(b); G[b].push_back(a); count++; } } } // Return the count of pairs return count; } // Driver Code int main() { string s1 = "abb" , s2 = "dad" ; int x = s1.length(); map< char , vector< char >> G; cout << countPairs(s1, s2, G, x) << endl; return 0; } // This code is contributed by // sanjeev2552 |
Java
import java.util.*; public class Main { // Function which will check if there is // a path between a and b by using BFS public static boolean checkPath( char a, char b, Map<Character, List<Character>> G) { Map<Character, Boolean> visited = new HashMap<>(); Deque<Character> queue = new LinkedList<>(); queue.addLast(a); visited.put(a, true ); while (!queue.isEmpty()) { char n = queue.removeFirst(); if (n == b) return true ; List<Character> edges = G.get(n); for ( char i : edges) { if (!visited.containsKey(i)) { queue.addLast(i); visited.put(i, true ); } } } return false ; } // Function to return the // minimum number of pairs public static int countPairs(String s1, String s2, Map<Character, List<Character>> G, int x) { int count = 0 ; for ( int i = 0 ; i < x; i++) { char a = s1.charAt(i); char b = s2.charAt(i); if (G.containsKey(a) && !G.containsKey(b) && a != b) { G.put(a, new ArrayList<>(Arrays.asList(b))); G.put(b, new ArrayList<>(Arrays.asList(a))); count++; } else if (G.containsKey(b) && !G.containsKey(a) && a != b) { G.put(b, new ArrayList<>(Arrays.asList(a))); G.put(a, new ArrayList<>(Arrays.asList(b))); count++; } else if (!G.containsKey(a) && !G.containsKey(b) && a != b) { G.put(a, new ArrayList<>(Arrays.asList(b))); G.put(b, new ArrayList<>(Arrays.asList(a))); count++; } else { if (!checkPath(a, b, G) && a != b) { List<Character> aEdges = G.get(a); aEdges.add(b); G.put(a, aEdges); List<Character> bEdges = G.get(b); bEdges.add(a); G.put(b, bEdges); count++; } } } return count- 1 ; } // Driver code public static void main(String[] args) { String s1 = "abb" ; String s2 = "dad" ; int x = s1.length(); Map<Character, List<Character>> G = new HashMap<>(); System.out.println(countPairs(s1, s2, G, x)); } } // This code is contributed by lokeshpotta20. |
Python3
# Python3 implementation of the approach from collections import defaultdict, deque # Function which will check if there is # a path between a and b by using BFS def Check_Path(a, b, G): visited = defaultdict( bool ) queue = deque() queue.append(a) visited[a] = True while queue: n = queue.popleft() if n = = b: return True for i in list (G[n]): if visited[i] = = False : queue.append(i) visited[i] = True return False # Function to return the minimum number of pairs def countPairs(s1, s2, G): name = defaultdict( bool ) # To store the count of pairs count = 0 # Iterating through the strings for i in range (x): a = s1[i] b = s2[i] # Check if we can add an edge in the graph if a in G and b not in G and a ! = b: G[a].append(b) G[b].append(a) count + = 1 elif b in G and a not in G and a ! = b: G[b].append(a) G[a].append(b) count + = 1 elif a not in G and b not in G and a ! = b: G[a].append(b) G[b].append(a) count + = 1 else : if not Check_Path(a, b, G) and a ! = b: G[a].append(b) G[b].append(a) count + = 1 # Return the count of pairs return count # Driver code if __name__ = = "__main__" : s1 = "abb" s2 = "dad" x = len (s1) G = defaultdict( list ) print (countPairs(s1, s2, G)) |
C#
using System; using System.Collections.Generic; namespace Main { class Program { // Function which will check if there is // a path between a and b by using BFS public static bool CheckPath( char a, char b, Dictionary< char , List< char >> G) { Dictionary< char , bool > visited = new Dictionary< char , bool >(); Queue< char > queue = new Queue< char >(); queue.Enqueue(a); visited[a] = true ; while (queue.Count > 0) { char n = queue.Dequeue(); if (n == b) return true ; List< char > edges = G[n]; foreach ( char i in edges) { if (!visited.ContainsKey(i)) { queue.Enqueue(i); visited[i] = true ; } } } return false ; } // Function to return the // minimum number of pairs public static int CountPairs( string s1, string s2, Dictionary< char , List< char >> G, int x) { int count = 0; for ( int i = 0; i < x; i++) { char a = s1[i]; char b = s2[i]; if (G.ContainsKey(a) && !G.ContainsKey(b) && a != b) { G[a] = new List< char >( new char [] { b }); G[b] = new List< char >( new char [] { a }); count++; } else if (G.ContainsKey(b) && !G.ContainsKey(a) && a != b) { G[b] = new List< char >( new char [] { a }); G[a] = new List< char >( new char [] { b }); count++; } else if (!G.ContainsKey(a) && !G.ContainsKey(b) && a != b) { G[a] = new List< char >( new char [] { b }); G[b] = new List< char >( new char [] { a }); count++; } else { if (!CheckPath(a, b, G) && a != b) { List< char > aEdges = G[a]; aEdges.Add(b); G[a] = aEdges; List< char > bEdges = G[b]; bEdges.Add(a); G[b] = bEdges; count++; } } } return count - 1; } // Driver code static void Main( string [] args) { string s1 = "abb" ; string s2 = "dad" ; int x = s1.Length; Dictionary< char , List< char >> G = new Dictionary< char , List< char >>(); Console.WriteLine(CountPairs(s1, s2, G, x)); } } } |
Javascript
// JavaScript implementation of the approach // Function which will check if there is // a path between a and b by using BFS function Check_Path(a, b, G) { const visited = {}; const queue = []; queue.push(a); visited[a] = true ; while (queue.length) { const n = queue.shift(); if (n === b) { return true ; } for (let i = 0; i < G[n].length; i++) { if (!visited[G[n][i]]) { queue.push(G[n][i]); visited[G[n][i]] = true ; } } } return false ; } // Function to return the minimum number of pairs function countPairs(s1, s2, G) { const name = {}; // To store the count of pairs let count = 0; // Iterating through the strings for (let i = 0; i < x; i++) { const a = s1[i]; const b = s2[i]; // Check if we can add an edge in the graph if (G[a] && !G[b] && a !== b) { G[a].push(b); G[b] = [a]; count++; } else if (G[b] && !G[a] && a !== b) { G[b].push(a); G[a] = [b]; count++; } else if (!G[a] && !G[b] && a !== b) { G[a] = [b]; G[b] = [a]; count++; } else { if (!Check_Path(a, b, G) && a !== b) { G[a].push(b); G[b] = [a]; count++; } } } // Return the count of pairs return count; } // Driver code const s1 = "abb" ; const s2 = "dad" ; const x = s1.length; const G = {}; console.log(countPairs(s1, s2, G)); // This code is contributed by rishabmalhdijo |
2
Time Complexity: O(x) where x is the length of the first string.
Space Complexity: O(x) where x is the length of the string
Please Login to comment...