# Minimum number of operations required to make two strings equal

Given Two Strings s1 and s2 containing only lowercase letters of same length. The task is to make these strings equal by using the minimum number of operations. In one operation you can equalize any letter to any other alphabet.
Examples:

Input: S1 = “abb”, S2 = “dad”
Output:
a -> d
b -> a
Explanation:
Strings after the first operation –
S1 = “dbb”, S2 = “ddd”
Strings after the second operation –
S1 = “ddd”, S2 = “ddd”

Input: S1 = “bab”, S2 = “aab”
Output:
b -> a
Explanation:
Strings after the first operation –
S1 = “aaa”, S2 = “aaa”

Approach: The idea is to use Disjoint set union data structure. Below are the illustration of the steps:

• Intialize the parent of each alphabet to itself.
• Traverse the two strings simulataneously with the help of index and check if the corresponding characters have different parents then merge the string which have less rank in the strings.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to find the ` `// minimum number of operations to ` `// make two strings equal  ` ` `  `#include ` ` `  `#define MAX 500001 ` `using` `namespace` `std; ` ` `  `int` `parent[MAX]; ` `int` `Rank[MAX]; ` ` `  `// Function to find out  ` `// parent of an alphabet ` `int` `find(``int` `x) ` `{ ` `    ``return` `parent[x] =  ` `       ``parent[x] == x ? x :  ` `            ``find(parent[x]); ` `} ` ` `  `// Function to merge two  ` `// different alphabets ` `void` `merge(``int` `r1, ``int` `r2) ` `{ ` `    ``// Merge a and b using  ` `    ``// rank compression ` `    ``if` `(r1 != r2) { ` `        ``if` `(Rank[r1] > Rank[r2]) { ` `            ``parent[r2] = r1; ` `            ``Rank[r1] += Rank[r2]; ` `        ``} ` `        ``else` `{ ` `            ``parent[r1] = r2; ` `            ``Rank[r2] += Rank[r1]; ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the minimum ` `// number of operations required ` `void` `minimumOperations(string s1,  ` `                       ``string s2){ ` `     `  `    ``// Initializing parent to i  ` `    ``// and rank(size) to 1 ` `    ``for` `(``int` `i = 1; i <= 26; i++) { ` `        ``parent[i] = i; ` `        ``Rank[i] = 1; ` `    ``} ` `     `  `    ``// We will store our  ` `    ``// answerin this vector ` `    ``vector > ans; ` ` `  `    ``// Traversing strings ` `    ``for` `(``int` `i = 0; i < s1.length(); i++) { ` `        ``if` `(s1[i] != s2[i]) { ` ` `  `            ``// If they have differnt parents ` `            ``if` `(find(s1[i] - 96) !=  ` `                ``find(s2[i] - 96)) { ` `                 `  `                ``// Find their respective  ` `                ``// parents and merge them ` `                ``int` `x = find(s1[i] - 96); ` `                ``int` `y = find(s2[i] - 96); ` `                ``merge(x, y); ` ` `  `                ``// Store this in  ` `                ``// our Answer vector ` `                ``ans.push_back({ s1[i], s2[i] }); ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// Number of operations ` `    ``cout << ans.size() << endl; ` `    ``for` `(``int` `i = 0; i < ans.size(); i++) ` `        ``cout << ans[i].first << ``"->"`  `             ``<

## Java

 `// Java implementation to find the ` `// minimum number of operations to ` `// make two Strings equal  ` `import` `java.util.*; ` ` `  `class` `GFG{ ` `     `  `static` `final` `int` `MAX = ``500001``; ` `static` `int` `[]parent = ``new` `int``[MAX]; ` `static` `int` `[]Rank = ``new` `int``[MAX]; ` ` `  `static` `class` `pair ` `{  ` `    ``char` `first, second;  ` `     `  `    ``public` `pair(``char` `first, ``char` `second)  ` `    ``{  ` `        ``this``.first = first;  ` `        ``this``.second = second;  ` `    ``}  ` `}  ` ` `  `// Function to find out  ` `// parent of an alphabet ` `static` `int` `find(``int` `x) ` `{ ` `    ``return` `parent[x] = parent[x] == x ? x :  ` `                  ``find(parent[x]); ` `} ` ` `  `// Function to merge two  ` `// different alphabets ` `static` `void` `merge(``int` `r1, ``int` `r2) ` `{ ` `     `  `    ``// Merge a and b using  ` `    ``// rank compression ` `    ``if` `(r1 != r2) ` `    ``{ ` `        ``if` `(Rank[r1] > Rank[r2]) ` `        ``{ ` `            ``parent[r2] = r1; ` `            ``Rank[r1] += Rank[r2]; ` `        ``} ` `        ``else`  `        ``{ ` `            ``parent[r1] = r2; ` `            ``Rank[r2] += Rank[r1]; ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the minimum ` `// number of operations required ` `static` `void` `minimumOperations(String s1,  ` `                              ``String s2) ` `{ ` `     `  `    ``// Initializing parent to i  ` `    ``// and rank(size) to 1 ` `    ``for``(``int` `i = ``1``; i <= ``26``; i++) ` `    ``{ ` `        ``parent[i] = i; ` `        ``Rank[i] = ``1``; ` `    ``} ` `     `  `    ``// We will store our  ` `    ``// answer in this vector ` `    ``Vector ans = ``new` `Vector(); ` ` `  `    ``// Traversing Strings ` `    ``for``(``int` `i = ``0``; i < s1.length(); i++) ` `    ``{ ` `        ``if` `(s1.charAt(i) != s2.charAt(i)) ` `        ``{ ` `             `  `            ``// If they have differnt parents ` `            ``if` `(find(s1.charAt(i) - ``96``) !=  ` `                ``find(s2.charAt(i) - ``96``))  ` `            ``{ ` `                 `  `                ``// Find their respective  ` `                ``// parents and merge them ` `                ``int` `x = find(s1.charAt(i) - ``96``); ` `                ``int` `y = find(s2.charAt(i) - ``96``); ` `                ``merge(x, y); ` ` `  `                ``// Store this in  ` `                ``// our Answer vector ` `                ``ans.add(``new` `pair(s1.charAt(i), ` `                                 ``s2.charAt(i))); ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// Number of operations ` `    ``System.out.print(ans.size() + ``"\n"``); ` `    ``for``(``int` `i = ``0``; i < ans.size(); i++) ` `        ``System.out.print(ans.get(i).first + ``"->"` `+  ` `                         ``ans.get(i).second +``"\n"``); ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `     `  `    ``// Two Strings  ` `    ``// S1 and S2 ` `    ``String s1, s2; ` `    ``s1 = ``"abb"``; ` `    ``s2 = ``"dad"``; ` `     `  `    ``// Function call ` `    ``minimumOperations(s1, s2); ` `} ` `} ` ` `  `// This code is contributed by Princi Singh`

## Python3

 `# Python3 implementation to find the ` `# minimum number of operations to ` `# make two strings equal ` ` `  `MAX` `=` `500001` `parent ``=` `[``0``] ``*` `MAX` `Rank ``=` `[``0``] ``*` `MAX` ` `  `# Function to find out ` `# parent of an alphabet ` `def` `find(x): ` `     `  `    ``if` `parent[x] ``=``=` `x: ` `        ``return` `x ` `    ``else``: ` `        ``return` `find(parent[x]) ` ` `  `# Function to merge two ` `# different alphabets ` `def` `merge(r1, r2): ` ` `  `    ``# Merge a and b using ` `    ``# rank compression ` `    ``if``(r1 !``=` `r2): ` `        ``if``(Rank[r1] > Rank[r2]): ` `            ``parent[r2] ``=` `r1 ` `            ``Rank[r1] ``+``=` `Rank[r2] ` ` `  `        ``else``: ` `            ``parent[r1] ``=` `r2 ` `            ``Rank[r2] ``+``=` `Rank[r1] ` ` `  `# Function to find the minimum ` `# number of operations required ` `def` `minimumOperations(s1, s2): ` ` `  `    ``# Initializing parent to i ` `    ``# and rank(size) to 1 ` `    ``for` `i ``in` `range``(``1``, ``26` `+` `1``): ` `        ``parent[i] ``=` `i ` `        ``Rank[i] ``=` `1` ` `  `    ``# We will store our ` `    ``# answerin this list ` `    ``ans ``=` `[] ` ` `  `    ``# Traversing strings ` `    ``for` `i ``in` `range``(``len``(s1)): ` `        ``if``(s1[i] !``=` `s2[i]): ` ` `  `            ``# If they have differnt parents ` `            ``if``(find(``ord``(s1[i]) ``-` `96``) !``=`  `               ``find(``ord``(s2[i]) ``-` `96``)): ` ` `  `                ``# Find their respective ` `                ``# parents and merge them ` `                ``x ``=` `find(``ord``(s1[i]) ``-` `96``) ` `                ``y ``=` `find(``ord``(s2[i]) ``-` `96``) ` `                ``merge(x, y) ` ` `  `                ``# Store this in ` `                ``# our Answer list ` `                ``ans.append([s1[i], s2[i]]) ` ` `  `    ``# Number of operations ` `    ``print``(``len``(ans)) ` `    ``for` `i ``in` `ans: ` `        ``print``(i[``0``], ``"->"``, i[``1``]) ` `         `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` ` `  `    ``# Two strings ` `    ``# S1 and S2 ` `    ``s1 ``=` `"abb"` `    ``s2 ``=` `"dad"` `     `  `    ``# Function Call ` `    ``minimumOperations(s1, s2) ` ` `  `# This code is contributed by Shivam Singh `

Output:

```2
a->d
b->a
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.