Open In App
Related Articles

# Jump Game

Given an array arr[] where each element represents the max number of steps that can be made forward from that index. The task is to find the minimum number of jumps to reach the end of the array starting from index 0.

Examples:

Input: arr[] = {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9}
Output: 3 (1-> 3 -> 9 -> 9)
Explanation: Jump from 1st element to 2nd element as there is only 1 step.
Now there are three options 5, 8 or 9. If 8 or 9 is chosen then the end node 9 can be reached. So 3 jumps are made.

Input:  arr[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
Output: 10
Explanation: In every step a jump is needed so the count of jumps is 10.

Recommended Practice

## Minimum number of jumps to reach the end using Recursion:

Start from the first element and recursively call for all the elements reachable from the first element. The minimum number of jumps to reach end from first can be calculated using the minimum value from the recursive calls.

minJumps(start, end) = 1 + Min(minJumps(k, end)) for all k reachable from start.

Follow the steps mentioned below to implement the idea:

• Create a recursive function.
• In each recursive call get all the reachable nodes from that index.
• For each of the index call the recursive function.
• Find the minimum number of jumps to reach the end from current index.
• Return the minimum number of jumps from the recursive call.

Below is the Implementation of the above approach:

## C++

 `// C++ program to find Minimum``// number of jumps to reach end``#include ``using` `namespace` `std;` `// Function to return the minimum number``// of jumps to reach arr[h] from arr[l]``int` `minJumps(``int` `arr[], ``int` `l,``int` `h)``{` `    ``// Base case: when source and destination are same``    ``if` `(h == l)``        ``return` `0;` `    ``// When nothing is reachable from the given source``    ``if` `(arr[l] == 0)``        ``return` `INT_MAX;` `    ``// Traverse through all the points``    ``// reachable from arr[l]``    ``// Recursively, get the minimum number``    ``// of jumps needed to reach arr[h] from``    ``// these reachable points``     ``int` `min = INT_MAX;``    ``for` `(``int` `i = l + 1; i <= h && i <= l + arr[l]; i++) {``        ``int` `jumps = minJumps(arr, i, h);``        ``if` `(jumps != INT_MAX && jumps + 1 < min)``            ``min = jumps + 1;``    ``}` `    ``return` `min;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``cout << ``"Minimum number of jumps to"``;``    ``cout << ``" reach the end is "` `<< minJumps(arr, 0,n-1);``    ``return` `0;``}` `// This code is contributed``// by Shivi_Aggarwal`

## C

 `// C program to find Minimum``// number of jumps to reach end``#include ``#include ` `// Returns minimum number of``// jumps to reach arr[h] from arr[l]``int` `minJumps(``int` `arr[], ``int` `l, ``int` `h)``{``    ``// Base case: when source and destination are same``    ``if` `(h == l)``        ``return` `0;` `    ``// When nothing is reachable from the given source``    ``if` `(arr[l] == 0)``        ``return` `INT_MAX;` `    ``// Traverse through all the points``    ``// reachable from arr[l]. Recursively``    ``// get the minimum number of jumps``    ``// needed to reach arr[h] from these``    ``// reachable points.``    ``int` `min = INT_MAX;``    ``for` `(``int` `i = l + 1; i <= h && i <= l + arr[l]; i++) {``        ``int` `jumps = minJumps(arr, i, h);``        ``if` `(jumps != INT_MAX && jumps + 1 < min)``            ``min = jumps + 1;``    ``}` `    ``return` `min;``}` `// Driver program to test above function``int` `main()``{``    ``int` `arr[] = {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``printf``(``"Minimum number of jumps to reach end is %d "``,``           ``minJumps(arr, 0, n - 1));``    ``return` `0;``}`

## Java

 `// Java program to find Minimum``// number of jumps to reach end``import` `java.io.*;``import` `java.util.*;` `class` `GFG {``    ``// Returns minimum number of``    ``// jumps to reach arr[h] from arr[l]``    ``static` `int` `minJumps(``int` `arr[], ``int` `l, ``int` `h)``    ``{``        ``// Base case: when source``        ``// and destination are same``        ``if` `(h == l)``            ``return` `0``;` `        ``// When nothing is reachable``        ``// from the given source``        ``if` `(arr[l] == ``0``)``            ``return` `Integer.MAX_VALUE;` `        ``// Traverse through all the points``        ``// reachable from arr[l]. Recursively``        ``// get the minimum number of jumps``        ``// needed to reach arr[h] from these``        ``// reachable points.``        ``int` `min = Integer.MAX_VALUE;``        ``for` `(``int` `i = l + ``1``; i <= h && i <= l + arr[l];``             ``i++) {``            ``int` `jumps = minJumps(arr, i, h);``            ``if` `(jumps != Integer.MAX_VALUE``                ``&& jumps + ``1` `< min)``                ``min = jumps + ``1``;``        ``}``        ``return` `min;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `arr[] = { ``1``, ``3``, ``5``, ``8``, ``9``, ``2``, ``6``, ``7``, ``6``, ``8``, ``9` `};``        ``int` `n = arr.length;``        ``System.out.print(``            ``"Minimum number of jumps to reach end is "``            ``+ minJumps(arr, ``0``, n - ``1``));``    ``}``}` `// This code is contributed by Sahil_Bansall`

## Python3

 `# Python3 program to find Minimum``# number of jumps to reach end` `# Returns minimum number of jumps``# to reach arr[h] from arr[l]`  `def` `minJumps(arr, l, h):` `    ``# Base case: when source and``    ``# destination are same``    ``if` `(h ``=``=` `l):``        ``return` `0` `    ``# when nothing is reachable``    ``# from the given source``    ``if` `(arr[l] ``=``=` `0``):``        ``return` `float``(``'inf'``)` `    ``# Traverse through all the points``    ``# reachable from arr[l]. Recursively``    ``# get the minimum number of jumps``    ``# needed to reach arr[h] from``    ``# these reachable points.``    ``min` `=` `float``(``'inf'``)``    ``for` `i ``in` `range``(l ``+` `1``, h ``+` `1``):``        ``if` `(i < l ``+` `arr[l] ``+` `1``):``            ``jumps ``=` `minJumps(arr, i, h)``            ``if` `(jumps !``=` `float``(``'inf'``) ``and``                    ``jumps ``+` `1` `< ``min``):``                ``min` `=` `jumps ``+` `1` `    ``return` `min`  `# Driver program to test above function``arr ``=` `[``1``, ``3``, ``5``, ``8``, ``9``, ``2``, ``6``, ``7``, ``6``, ``8``, ``9``]``n ``=` `len``(arr)``print``(``'Minimum number of jumps to reach'``,``      ``'end is'``, minJumps(arr, ``0``, n``-``1``))` `# This code is contributed by Soumen Ghosh`

## C#

 `// C# program to find Minimum``// number of jumps to reach end``using` `System;` `class` `GFG {``    ``// Returns minimum number of``    ``// jumps to reach arr[h] from arr[l]``    ``static` `int` `minJumps(``int``[] arr, ``int` `l, ``int` `h)``    ``{``        ``// Base case: when source``        ``// and destination are same``        ``if` `(h == l)``            ``return` `0;` `        ``// When nothing is reachable``        ``// from the given source``        ``if` `(arr[l] == 0)``            ``return` `int``.MaxValue;` `        ``// Traverse through all the points``        ``// reachable from arr[l]. Recursively``        ``// get the minimum number of jumps``        ``// needed to reach arr[h] from these``        ``// reachable points.``        ``int` `min = ``int``.MaxValue;``        ``for` `(``int` `i = l + 1; i <= h && i <= l + arr[l];``             ``i++) {``            ``int` `jumps = minJumps(arr, i, h);``            ``if` `(jumps != ``int``.MaxValue && jumps + 1 < min)``                ``min = jumps + 1;``        ``}``        ``return` `min;``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``        ``int` `n = arr.Length;``        ``Console.Write(``            ``"Minimum number of jumps to reach end is "``            ``+ minJumps(arr, 0, n - 1));``    ``}``}` `// This code is contributed by Sam007`

## Javascript

 ``

## PHP

 ``

Output

```Minimum number of jumps to reach the end is 3
```

Time complexity: O(nn). There are maximum n possible ways to move from an element.  So the maximum number of steps can be nn.
Auxiliary Space: O(n). For recursion call stack.

## Minimum number of jumps to reach the end Using Dynamic Programming (Memoization):

It can be observed that there will be overlapping subproblems.

For example in array, arr[] = {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9} minJumps(3, 9) will be called two times as arr is reachable from arr and arr. So this problem has both properties (optimal substructure and overlapping subproblems) of Dynamic Programming.

Follow the below steps to implement the idea:

• Create memo[] such that memo[i] indicates the minimum number of jumps needed to reach memo[n-1] from memo[i] to store previously solved subproblems.
• During the recursion call, if the same state is called more than once, then we can directly return the answer stored for that state instead of calculating again.
• Otherwise, In each recursive call get all the reachable nodes from that index.
• For each of the index call the recursive function.
• Find the minimum number of jumps to reach the end from current index.

## C++

 `#include ``using` `namespace` `std;` ` ``int` `jump(vector<``int``>& nums, ``int` `idx, ``int` `end, vector<``int``>& memo) {``        ` `        ``//we reached the end. No jumps to make further``        ``if` `(idx == end)``            ``return` `0;``        ` `        ``if` `(memo[idx] != -1)``            ``return` `memo[idx];``        ` `        ``int` `min_jumps = INT_MAX - 1;``        ` `        ``//we will try to make all possible jumps from current index``        ``//and select the minimum of those``        ``//It does not matter if we try from 1 to nums[idx]``        ``//or from nums[idx] to 1``        ``for` `(``int` `j = nums[idx]; j >= 1; --j) {``          ` `            ``//If we make this jump 'j' distance away from idx``            ``//do we overshoot?``            ``//if we land within the nums, we will test further``            ``if` `(idx + j <= end) {``              ` `                ``//Make a jump to idx + j index and explore further``                ``//then update min_jumps with the minimum jumps``                ``//we made to reach end while trying all possible``                ``//nums[idx] jumps from current index.``                ``min_jumps = std::min(min_jumps, 1 + jump(nums, idx + j, end, memo));``            ``}``        ``}``        ` `        ``return` `memo[idx] = min_jumps;``    ``}``    ` `    ``//Memoization``    ``int` `minJumps(vector<``int``>& nums) {``        ``vector<``int``> memo(nums.size(), -1);``        ``return` `jump(nums, 0, nums.size() - 1, memo);``    ``}`  `int` `main()``{``    ``int` `n = 11;``    ``vector<``int``> arr{ 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``    ``cout << minJumps(arr) << endl;` `    ``return` `0;``}` `// This code is contributed by Tushar Seth`

## Java

 `import` `java.util.Arrays;` `public` `class` `Geek {` `    ``// Helper function to find the minimum jumps required to reach the end``    ``private` `static` `int` `jump(``int``[] nums, ``int` `idx, ``int` `end, ``int``[] memo) {` `        ``// We reached the end. No jumps to make further``        ``if` `(idx == end)``            ``return` `0``;` `        ``if` `(memo[idx] != -``1``)``            ``return` `memo[idx];` `        ``int` `min_jumps = Integer.MAX_VALUE - ``1``;` `        ``// We will try to make all possible jumps from the current index``        ``// and select the minimum of those.``        ``// It does not matter if we try from 1 to nums[idx] or from nums[idx] to 1.``        ``for` `(``int` `j = nums[idx]; j >= ``1``; --j) {``            ``// If we make this jump 'j' distance away from idx,``            ``// do we overshoot?``            ``// If we land within the nums, we will test further.``            ``if` `(idx + j <= end) {``                ``// Make a jump to idx + j index and explore further,``                ``// then update min_jumps with the minimum jumps``                ``// we made to reach the end while trying all possible``                ``// nums[idx] jumps from the current index.``                ``min_jumps = Math.min(min_jumps, ``1` `+ jump(nums, idx + j, end, memo));``            ``}``        ``}` `        ``return` `memo[idx] = min_jumps;``    ``}` `    ``// Memoization``    ``private` `static` `int` `minJumps(``int``[] nums) {``        ``int``[] memo = ``new` `int``[nums.length];``        ``Arrays.fill(memo, -``1``);``        ``return` `jump(nums, ``0``, nums.length - ``1``, memo);``    ``}` `    ``public` `static` `void` `main(String[] args) {``        ``int``[] arr = {``1``, ``3``, ``5``, ``8``, ``9``, ``2``, ``6``, ``7``, ``6``, ``8``, ``9``};``        ``System.out.println(minJumps(arr));``    ``}``}`

## Javascript

 `function` `jump(nums, idx, end, memo) {``    ``// We reached the end. No jumps to make further.``    ``if` `(idx === end)``        ``return` `0;` `    ``if` `(memo[idx] !== -1)``        ``return` `memo[idx];` `    ``let min_jumps = Number.MAX_SAFE_INTEGER - 1;` `    ``// We will try to make all possible jumps from the current index``    ``// and select the minimum of those.``    ``// It does not matter if we try from 1 to nums[idx] or from nums[idx] to 1.``    ``for` `(let j = nums[idx]; j >= 1; --j) {``        ``// If we make this jump 'j' distance away from idx,``        ``// do we overshoot?``        ``// If we land within the nums, we will test further.``        ``if` `(idx + j <= end) {``            ``// Make a jump to idx + j index and explore further,``            ``// then update min_jumps with the minimum jumps``            ``// we made to reach the end while trying all possible``            ``// nums[idx] jumps from the current index.``            ``min_jumps = Math.min(min_jumps, 1 + jump(nums, idx + j, end, memo));``        ``}``    ``}` `    ``return` `memo[idx] = min_jumps;``}` `function` `minJumps(nums) {``    ``const memo = Array(nums.length).fill(-1);``    ``return` `jump(nums, 0, nums.length - 1, memo);``}` `const arr = [1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9];``console.log(minJumps(arr));`

Time complexity: O(n^2) as for each position i the recursive function is called once and a loop runs for O(n) for each position in the worst case denoting the number of reachable positions from position i.
Auxiliary Space: O(n), because of recursive stack space and memo array.

## Minimum number of jumps to reach the end using Dynamic Programming (Tabulation):

Follow the below steps to implement the idea:

• Create jumps[] array from left to right such that jumps[i] indicate the minimum number of jumps needed to reach arr[i] from arr.
• To fill the jumps array run a nested loop inner loop counter is j and the outer loop count is i.
• Outer loop from 1 to n-1 and inner loop from 0 to i.
• If i is less than j + arr[j] then set jumps[i] to minimum of jumps[i] and jumps[j] + 1. initially set jump[i] to INT MAX
• Return jumps[n-1].

Below is the implementation of the above approach:

## C++

 `// C++ program for Minimum number``// of jumps to reach end``#include ``using` `namespace` `std;` `int` `min(``int` `x, ``int` `y) { ``return` `(x < y) ? x : y; }` `// Returns minimum number of jumps``// to reach arr[n-1] from arr``int` `minJumps(``int` `arr[], ``int` `n)``{``    ``// jumps[n-1] will hold the result``    ``int``* jumps = ``new` `int``[n];``    ``int` `i, j;` `    ``if` `(n == 0 || arr == 0)``        ``return` `INT_MAX;` `    ``jumps = 0;` `    ``// Find the minimum number of jumps to reach arr[i]``    ``// from arr, and assign this value to jumps[i]``    ``for` `(i = 1; i < n; i++) {``        ``jumps[i] = INT_MAX;``        ``for` `(j = 0; j < i; j++) {``            ``if` `(i <= j + arr[j] && jumps[j] != INT_MAX) {``                ``jumps[i] = min(jumps[i], jumps[j] + 1);``                ``break``;``            ``}``        ``}``    ``}``    ``return` `jumps[n - 1];``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``    ``int` `size = ``sizeof``(arr) / ``sizeof``(``int``);``    ``cout << ``"Minimum number of jumps to reach end is "``         ``<< minJumps(arr, size);``    ``return` `0;``}` `// This is code is contributed by rathbhupendra`

## C

 `// C program for Minimum number``// of jumps to reach end``#include ``#include ` `int` `min(``int` `x, ``int` `y) { ``return` `(x < y) ? x : y; }` `// Returns minimum number of``// jumps to reach arr[n-1] from arr``int` `minJumps(``int` `arr[], ``int` `n)``{``    ``// jumps[n-1] will hold the result``    ``int` `jumps[n];``    ``int` `i, j;` `    ``if` `(n == 0 || arr == 0)``        ``return` `INT_MAX;` `    ``jumps = 0;` `    ``// Find the minimum number of``    ``// jumps to reach arr[i]``    ``// from arr, and assign this``    ``// value to jumps[i]``    ``for` `(i = 1; i < n; i++) {``        ``jumps[i] = INT_MAX;``        ``for` `(j = 0; j < i; j++) {``            ``if` `(i <= j + arr[j] && jumps[j] != INT_MAX) {``                ``jumps[i] = min(jumps[i], jumps[j] + 1);``                ``break``;``            ``}``        ``}``    ``}``    ``return` `jumps[n - 1];``}` `// Driver program to test above function``int` `main()``{``    ``int` `arr[] = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``    ``int` `size = ``sizeof``(arr) / ``sizeof``(``int``);``    ``printf``(``"Minimum number of jumps to reach end is %d "``,``           ``minJumps(arr, size));``    ``return` `0;``}`

## Java

 `// JAVA Code for Minimum number``// of jumps to reach end` `import` `java.io.*;` `class` `GFG {` `    ``private` `static` `int` `minJumps(``int``[] arr, ``int` `n)``    ``{``        ``// jumps[n-1] will hold the``        ``int` `jumps[] = ``new` `int``[n];``        ``// result``        ``int` `i, j;` `        ``// if first element is 0,``        ``if` `(n == ``0` `|| arr[``0``] == ``0``)``            ``return` `Integer.MAX_VALUE;``        ``// end cannot be reached` `        ``jumps[``0``] = ``0``;` `        ``// Find the minimum number of jumps to reach arr[i]``        ``// from arr, and assign this value to jumps[i]``        ``for` `(i = ``1``; i < n; i++) {``            ``jumps[i] = Integer.MAX_VALUE;``            ``for` `(j = ``0``; j < i; j++) {``                ``if` `(i <= j + arr[j]``                    ``&& jumps[j] != Integer.MAX_VALUE) {``                    ``jumps[i]``                        ``= Math.min(jumps[i], jumps[j] + ``1``);``                    ``break``;``                ``}``            ``}``        ``}``        ``return` `jumps[n - ``1``];``    ``}` `    ``// driver program to test above function``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``1``, ``3``, ``5``, ``8``, ``9``, ``2``, ``6``, ``7``, ``6``, ``8``, ``9` `};` `        ``System.out.println(``            ``"Minimum number of jumps to reach end is : "``            ``+ minJumps(arr, arr.length));``    ``}``}` `// This code is contributed by Arnav Kr. Mandal.`

## Python3

 `# Python3 program to find Minimum``# number of jumps to reach end` `# Returns minimum number of jumps``# to reach arr[n-1] from arr`  `def` `minJumps(arr, n):``    ``jumps ``=` `[``0` `for` `i ``in` `range``(n)]` `    ``if` `(n ``=``=` `0``) ``or` `(arr[``0``] ``=``=` `0``):``        ``return` `float``(``'inf'``)` `    ``jumps[``0``] ``=` `0` `    ``# Find the minimum number of``    ``# jumps to reach arr[i] from``    ``# arr and assign this``    ``# value to jumps[i]``    ``for` `i ``in` `range``(``1``, n):``        ``jumps[i] ``=` `float``(``'inf'``)``        ``for` `j ``in` `range``(i):``            ``if` `(i <``=` `j ``+` `arr[j]) ``and` `(jumps[j] !``=` `float``(``'inf'``)):``                ``jumps[i] ``=` `min``(jumps[i], jumps[j] ``+` `1``)``                ``break``    ``return` `jumps[n``-``1``]`  `# Driver Program to test above function``arr ``=` `[``1``, ``3``, ``5``, ``8``, ``9``, ``2``, ``6``, ``7``, ``6``, ``8``, ``9``]``size ``=` `len``(arr)``print``(``'Minimum number of jumps to reach'``,``      ``'end is'``, minJumps(arr, size))` `# This code is contributed by Soumen Ghosh`

## C#

 `// C# Code for Minimum number of jumps to reach end``using` `System;` `class` `GFG {``    ``static` `int` `minJumps(``int``[] arr, ``int` `n)``    ``{``        ``// jumps[n-1] will hold the``        ``// result``        ``int``[] jumps = ``new` `int``[n];` `        ``// if first element is 0,``        ``if` `(n == 0 || arr == 0)` `            ``// end cannot be reached``            ``return` `int``.MaxValue;` `        ``jumps = 0;` `        ``// Find the minimum number of``        ``// jumps to reach arr[i]``        ``// from arr, and assign``        ``// this value to jumps[i]``        ``for` `(``int` `i = 1; i < n; i++) {``            ``jumps[i] = ``int``.MaxValue;``            ``for` `(``int` `j = 0; j < i; j++) {``                ``if` `(i <= j + arr[j]``                    ``&& jumps[j] != ``int``.MaxValue) {``                    ``jumps[i]``                        ``= Math.Min(jumps[i], jumps[j] + 1);``                    ``break``;``                ``}``            ``}``        ``}``        ``return` `jumps[n - 1];``    ``}` `    ``// Driver program``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };``        ``Console.Write(``            ``"Minimum number of jumps to reach end is : "``            ``+ minJumps(arr, arr.Length));``    ``}``}` `// This code is contributed by Sam007`

## Javascript

 ``

## PHP

 ``

Output

```Minimum number of jumps to reach end is 3
```

Time Complexity: O(n2
Auxiliary Space: O(n), since n extra space has been taken.

Refer to the article given below to solve this problem in O(n) time:

Minimum number of jumps to reach end | Set 2 (O(n) solution)