# Split the number into N parts such that difference between the smallest and the largest part is minimum

Given two integers ‘X’ and ‘N’, the task is to split the integer ‘X’ into exactly ‘N’ parts such that:
`X1 + X2 + X3 + ... + Xn = X` and the difference between the maximum and the minimum number from the sequence is minimized.
Print the sequence in the end, if the number cannot be divided into exactly ‘N’ parts then print ‘-1’ instead.

Examples:

Input: X = 5, N = 3
Output: 1 2 2
Divide 5 into 3 parts such that the difference between the largest and smallest integer among
them is as minimal as possible. So we divide 5 as 1 + 2 + 2.

Input: X = 25, N = 5
Output: 5 5 5 5 5

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: There is always a way of splitting the number if `X >= N`.

• If the number is being split into exactly ‘N’ parts then every part will have the value `X/N` and the remaining `X%N` part can be distributed among any `X%N` numbers.
• Thus, if `X % N == 0` then the minimum difference will always be ‘0’ and the sequence will contain all equal numbers i.e. `x/n`.
• Else, the difference will be ‘1’ and the sequence will be `X/N, X/N, ..., (X/N)+1, (X/N)+1.`.

Below is the implementation of the above approach:

## C++

 `// CPP implementation of the approach ` `#include ` `using` `namespace` `std;; ` ` `  `// Function that prints  ` `// the required sequence ` `void` `split(``int` `x, ``int` `n) ` `{ ` ` `  `// If we cannot split the  ` `// number into exactly 'N' parts ` `if``(x < n) ` `cout<<``"-1"``<<``" "``; ` ` `  `         `  ` `  `    ``// If x % n == 0 then the minimum  ` `    ``// difference is 0 and all  ` `    ``// numbers are x / n ` `    ``else` `if` `(x % n == 0) ` `    ``{ ` `        ``for``(``int` `i=0;i= zp) ` `            ``cout<<(pp + 1)<<``" "``; ` `            ``else` `            ``cout<

## Java

 `// Java implementation of the approach ` `  `  `class` `GFG{ ` `// Function that prints  ` `// the required sequence ` `static` `void` `split(``int` `x, ``int` `n) ` `{ ` `  `  `// If we cannot split the  ` `// number into exactly 'N' parts ` `if``(x < n) ` `System.out.print(``"-1 "``); ` `  `  `          `  `  `  `    ``// If x % n == 0 then the minimum  ` `    ``// difference is 0 and all  ` `    ``// numbers are x / n ` `    ``else` `if` `(x % n == ``0``) ` `    ``{ ` `        ``for``(``int` `i=``0``;i= zp) ` `            ``System.out.print((pp + ``1``)+``" "``); ` `            ``else` `            ``System.out.print(pp+``" "``); ` `        ``} ` `    ``} ` `} ` `      `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{  ` `          `  `int` `x = ``5``; ` `int` `n = ``3``; ` `split(x, n); ` `  `  `} ` `} ` `//This code is contributed by mits `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function that prints  ` `# the required sequence ` `def` `split(x, n): ` ` `  `    ``# If we cannot split the  ` `    ``# number into exactly 'N' parts ` `    ``if``(x < n):  ` `        ``print``(``-``1``) ` ` `  `    ``# If x % n == 0 then the minimum  ` `    ``# difference is 0 and all  ` `    ``# numbers are x / n ` `    ``elif` `(x ``%` `n ``=``=` `0``): ` `        ``for` `i ``in` `range``(n): ` `            ``print``(x``/``/``n, end ``=``" "``) ` `    ``else``: ` `        ``# upto n-(x % n) the values  ` `        ``# will be x / n  ` `        ``# after that the values  ` `        ``# will be x / n + 1 ` `        ``zp ``=` `n ``-` `(x ``%` `n) ` `        ``pp ``=` `x``/``/``n ` `        ``for` `i ``in` `range``(n): ` `            ``if``(i>``=` `zp): ` `                ``print``(pp ``+` `1``, end ``=``" "``) ` `            ``else``: ` `                ``print``(pp, end ``=``" "``) ` `       `  `# Driver code           ` `x ``=` `5` `n ``=` `3` `split(x, n) `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `public` `class` `GFG{ ` `    ``// Function that prints  ` `// the required sequence  ` `static` `void` `split(``int` `x, ``int` `n)  ` `{  ` ` `  `// If we cannot split the  ` `// number into exactly 'N' parts  ` `if``(x < n)  ` `Console.WriteLine(``"-1 "``);  ` ` `  `         `  ` `  `    ``// If x % n == 0 then the minimum  ` `    ``// difference is 0 and all  ` `    ``// numbers are x / n  ` `    ``else` `if` `(x % n == 0)  ` `    ``{  ` `        ``for``(``int` `i=0;i= zp)  ` `            ``Console.Write((pp + 1)+``" "``);  ` `            ``else` `            ``Console.Write(pp+``" "``);  ` `        ``}  ` `    ``}  ` `}  ` `     `  `// Driver code  ` `static` `public` `void` `Main (){ ` ` `  `int` `x = 5;  ` `int` `n = 3;  ` `split(x, n);  ` ` `  `}  ` `}  ` `//This code is contributed by Sachin. `

## PHP

 `= ``\$zp``) ` `            ``{ ` `                ``echo` `(int)``\$pp` `+ 1; ` `                ``echo` `(``" "``); ` `            ``} ` `            ``else` `            ``{ ` `                ``echo` `(int)``\$pp``; ` `                ``echo` `(``" "``); ` `            ``} ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code      ` `\$x` `= 5; ` `\$n` `= 3; ` `split( ``\$x``, ``\$n``); ` ` `  `// This code is contributed  ` `// by Shivi_Aggarwal ` `?> `

Output:

```1 2 2
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.