Minimum flips required to maximize a number with k set bits
Given two numbers n and k, we need to find the minimum number of flips required to maximize given number by flipping its bits such that the resulting number has exactly k set bits.
Note : K must be less than number of bits in n.
Examples :
Input : n = 14, k = 2 Output : Min Flips = 1 Explanation : Binary representation of 14 = 1110 Largest 4-digit Binary number with 2 set bit = 1100 Conversion from 1110 to 1100 requires 1 flipping Input : n = 145, k = 4 Output : Min Flips = 3 Explanation : Binary representation of 145 = 10010001 Largest 8-digit Binary number with 4 set bit = 11110000 Conversion from 10010001 to 11110000 requires 3 flipping
For the given number n and k find the largest number possible with k-set bits and having exactly same number of bits as n has as :
- size = log2(n) + 1 gives the number of bits of n.
- max = pow(2, k) – 1 gives largest possible number with k bits.
- max = max << (size – k) gives the largest number possible with k-set bits and having exactly same number of bits as n has
- Number of set bit in (n XOR max ) is our required number of flipping.
Illustration of above approach :
let n = 145 (10010001), k = 4 size = log2(n) + 1 = log2(145) + 1 = 7 + 1 = 8 max = pow(2, k) -1 = pow(2, 4) - 1 = 16 - 1 = 15 (1111) max = max << (size - k) = 15 << (8 - 4) = 240 (11110000) number of set bit in = no. of set bit in (n XOR max ) (145 ^ 240 ) = 3
C++
// CPP for finding min flip // for maximizing given n #include <bits/stdc++.h> using namespace std; // function for finding set bit int setBit( int xorValue) { int count = 0; while (xorValue) { if (xorValue % 2) count++; xorValue /= 2; } // return count of set bit return count; } // function for finding min flip int minFlip( int n, int k) { // number of bits in n int size = log2(n) + 1; // Find the largest number of // same size with k set bits int max = pow (2, k) - 1; max = max << (size - k); // Count bit differences to find // required flipping. int xorValue = (n ^ max); return (setBit(xorValue)); } // driver program int main() { int n = 27, k = 3; cout << "Min Flips = " << minFlip(n, k); return 0; } |
Java
// JAVA Code to find Minimum flips required // to maximize a number with k set bits import java.util.*; class GFG { // function for finding set bit static int setBit( int xorValue) { int count = 0 ; while (xorValue >= 1 ) { if (xorValue % 2 == 1 ) count++; xorValue /= 2 ; } // return count of set bit return count; } // function for finding min flip static int minFlip( int n, int k) { // number of bits in n int size = ( int )(Math.log(n) / Math.log( 2 )) + 1 ; // Find the largest number of // same size with k set bits int max = ( int )Math.pow( 2 , k) - 1 ; max = max << (size - k); // Count bit differences to find // required flipping. int xorValue = (n ^ max); return (setBit(xorValue)); } /* Driver program to test above function */ public static void main(String[] args) { int n = 27 , k = 3 ; System.out.println( "Min Flips = " + minFlip(n, k)); } } // This code is contributed by Arnav Kr. Mandal. |
Python 3
# Python3 for finding min flip # for maximizing given n import math # function for finding set bit def setBit(xorValue): count = 0 while (xorValue): if (xorValue % 2 ): count + = 1 xorValue = int (xorValue / 2 ) # return count # of set bit return count # function for # finding min flip def minFlip(n, k): # number of bits in n size = int (math.log(n) / math.log( 2 ) + 1 ) # Find the largest number of # same size with k set bits max = pow ( 2 , k) - 1 max = max << (size - k) # Count bit differences to # find required flipping. xorValue = (n ^ max ) return (setBit(xorValue)) # Driver Code n = 27 k = 3 print ( "Min Flips = " , minFlip(n, k)) # This code is contributed # by Smitha |
C#
// C# Code to find Minimum flips required // to maximize a number with k set bits using System; class GFG { // function for finding set bit static int setBit( int xorValue) { int count = 0; while (xorValue >= 1) { if (xorValue % 2 == 1) count++; xorValue /= 2; } // return count of set bit return count; } // function for finding min flip static int minFlip( int n, int k) { // number of bits in n int size = ( int )(Math.Log(n) / Math.Log(2)) + 1; // Find the largest number of // same size with k set bits int max = ( int )Math.Pow(2, k) - 1; max = max << (size - k); // Count bit differences to find // required flipping. int xorValue = (n ^ max); return (setBit(xorValue)); } // Driver Code public static void Main() { int n = 27, k = 3; Console.Write( "Min Flips = " + minFlip(n, k)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP for finding min flip // for maximizing given n // function for finding set bit function setBit( $xorValue ) { $count = 0; while ( $xorValue ) { if ( $xorValue % 2) $count ++; $xorValue /= 2; } // return count of set bit return $count ; } // function for finding min flip function minFlip( $n , $k ) { // number of bits in n $size = log( $n ) + 1; // Find the largest number of // same size with k set bits $max = pow(2, $k ) - 1; $max = $max << ( $size - $k ); // Count bit differences to find // required flipping. $xorValue = ( $n ^ $max ); return (setBit( $xorValue )); } // Driver Code $n = 27; $k = 3; echo "Min Flips = " , minFlip( $n , $k ); // This code is contributed by vt_m. ?> |
Javascript
<script> // Javascript for finding min flip // for maximizing given n // function for finding set bit function setBit( xorValue) { var count = 0; while (xorValue) { if (xorValue % 2) count++; xorValue = parseInt(xorValue / 2); } // return count of set bit return count; } // function for finding min flip function minFlip(n, k) { // number of bits in n var size = Math.log2(n) + 1; // Find the largest number of // same size with k set bits var max = Math.pow(2, k) - 1; max = (max << (size - k)); // Count bit differences to find // required flipping. var xorValue = (n ^ max); return (setBit(xorValue)); } // driver program var n = 27, k = 3; document.write( "Min Flips = " + minFlip(n, k)); // This code is contributed by itsok. </script> |
Output :
Min Flips = 3
Time Complexity: O(log2n), where n represents the given integer.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...