# Minimum elements to be removed such that sum of adjacent elements is always even

Given an array of N integers. The task is to eliminate the minimum number of elements such that in the resulting array the sum of any two adjacent values is even.

Examples:

```Input : arr[] = {1, 2, 3}
Output : 1
Remove 2 from the array.

Input : arr[] = {1, 3, 5, 4, 2}
Output : 2
Remove 4 and 2.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The sum of 2 numbers is even if either both of them is odd or both of them is even. This means for every pair of consecutive numbers that have the different parity, eliminate one of them.

So, to make the adjacent elements sum even, either all elements should be odd or even. So the following greedy algorithm works:

• Go through all the elements in order.
• Count the odd and even elements in the array.
• Return the minimum count.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the above approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find minimum number of eliminations ` `// such that sum of all adjacent elements is even ` `int` `min_elimination(``int` `n, ``int` `arr[]) ` `{ ` `    ``int` `countOdd = 0; ` ` `  `    ``// Stores the new value ` `    ``for` `(``int` `i = 0; i < n; i++) ` ` `  `        ``// Count odd numbers ` `        ``if` `(arr[i] % 2) ` `            ``countOdd++; ` ` `  `    ``// Return the minimum of even and ` `    ``// odd count ` `    ``return` `min(countOdd, n - countOdd); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2, 3, 7, 9 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``cout << min_elimination(n, arr); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the above approach ` `class` `GFG ` `{ ` `     `  `// Function to find minimum number of  ` `// eliminations such that sum of all  ` `// adjacent elements is even ` `static` `int` `min_elimination(``int` `n, ``int` `arr[]) ` `{ ` `    ``int` `countOdd = ``0``; ` ` `  `    ``// Stores the new value ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` ` `  `        ``// Count odd numbers ` `        ``if` `(arr[i] % ``2` `== ``1``) ` `            ``countOdd++; ` ` `  `    ``// Return the minimum of even  ` `    ``// and odd count ` `    ``return` `Math.min(countOdd, n - countOdd); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr[] = { ``1``, ``2``, ``3``, ``7``, ``9` `}; ` `    ``int` `n = arr.length; ` ` `  `    ``System.out.println(min_elimination(n, arr)); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

## Python3

 `# Python 3 implementation of the  ` `# above approach ` ` `  `# Function to find minimum number of  ` `# eliminations such that sum of all  ` `# adjacent elements is even ` `def` `min_elimination(n, arr): ` `    ``countOdd ``=` `0` ` `  `    ``# Stores the new value ` `    ``for` `i ``in` `range``(n): ` `         `  `        ``# Count odd numbers ` `        ``if` `(arr[i] ``%` `2``): ` `            ``countOdd ``+``=` `1` ` `  `    ``# Return the minimum of even and ` `    ``# odd count ` `    ``return` `min``(countOdd, n ``-` `countOdd) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[``1``, ``2``, ``3``, ``7``, ``9``] ` `    ``n ``=` `len``(arr) ` ` `  `    ``print``(min_elimination(n, arr)) ` ` `  `# This code is contributed by ` `# Surendra_Gangwar `

## C#

 `// C# implementation of the above approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to find minimum number of  ` `// eliminations such that sum of all  ` `// adjacent elements is even ` `static` `int` `min_elimination(``int` `n, ``int``[] arr) ` `{ ` `    ``int` `countOdd = 0; ` ` `  `    ``// Stores the new value ` `    ``for` `(``int` `i = 0; i < n; i++) ` ` `  `        ``// Count odd numbers ` `        ``if` `(arr[i] % 2 == 1) ` `            ``countOdd++; ` ` `  `    ``// Return the minimum of even  ` `    ``// and odd count ` `    ``return` `Math.Min(countOdd, n - countOdd); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int``[] arr = { 1, 2, 3, 7, 9 }; ` `    ``int` `n = arr.Length; ` ` `  `    ``Console.WriteLine(min_elimination(n, arr)); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

## PHP

 ` `

Output:

```1
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

5

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.