# Minimum distance to visit all the nodes of an undirected weighted tree

Given a weighted tree with N nodes starting from 1 to N. The distance between any two nodes is given by the edge weight. Node 1 is the source, the task is to visit all the nodes of the tree with minimum distance traveled.

Examples:

Input:
u[] = {1, 1, 2, 2, 1}
v[] = {2, 3, 5, 6, 4}
w[] = {1, 4, 2, 50, 5}
Output: 73

Input:
u[] = {1, 2}
v[] = {2, 3}
w[] = {3, 1}
Output: 4

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Let’s suppose there are n leaf l1, l2, l3, ……, ln and the cost of the path from root to each leaf is c1, c2, c3, ……, cn.

To travel from l1 to l2 some of the edges will be visited twice ( till the LCA of l1 and l2 all the edges will be visited twice ), for l2 to l3 and some of the edges will be visited ( till the LCA of l2 and l3 all the edges will be visited twice ) twice and similarly every edge of the tree will be visited twice ( observation ).

To minimize the cost of travelling, the maximum cost path from the root to some leaf should be avoided.

Hence the cost = (c1 + c2 + c3 + …… + cn) – max(c1, c2, c3, ……, cn)

min cost = (2 * sum of edge weight)max(c1, c2, c3, ……, cn)

DFS can be used with some modification to find the largest distance.

Below is the implementation of the above approach:

## Java

 `// Java implementation of the approach ` `import` `java.util.LinkedList; ` `import` `java.util.Scanner; ` ` `  `class` `Graph { ` ` `  `    ``class` `Edge { ` ` `  `        ``// from - The source of an edge ` `        ``// to - destination of an edge ` `        ``// wt - distance between two nodes ` `        ``int` `from; ` `        ``int` `to; ` `        ``long` `wt; ` `        ``Edge(``int` `a, ``int` `b, ``long` `w) ` `        ``{ ` `            ``from = a; ` `            ``to = b; ` `            ``wt = w; ` `        ``} ` `    ``} ` ` `  `    ``// adj_lis - It is used to ` `    ``// make the adjacency list of a tree ` ` `  `    ``// V - Total number of nodes in a tree ` ` `  `    ``// val - This array stores the ` `    ``// distance from node 1 to node 'n' ` `    ``static` `LinkedList[] adj_lis; ` `    ``static` `int` `V; ` `    ``static` `long` `val[]; ` ` `  `    ``Graph(``int` `v) ` `    ``{ ` `        ``this``.V = v; ` `        ``adj_lis = ``new` `LinkedList[V]; ` `        ``for` `(``int` `i = ``0``; i < V; i++) ` `            ``adj_lis[i] = ``new` `LinkedList<>(); ` `    ``} ` ` `  `    ``// Method to add an edge between two nodes ` `    ``void` `add_edge(``int` `to, ``int` `from, ``long` `wt) ` `    ``{ ` `        ``adj_lis[from].add( ` `            ``new` `Edge(from, to, wt)); ` `        ``adj_lis[to].add( ` `            ``new` `Edge(to, from, wt)); ` `    ``} ` ` `  `    ``// DFS method to find distance ` `    ``// between node 1 to other nodes ` `    ``void` `dfs(``int` `v, ` `             ``int` `par, ` `             ``long` `sum, ` `             ``boolean``[] visited) ` `    ``{ ` `        ``val[v] = sum; ` `        ``visited[v] = ``true``; ` `        ``for` `(Edge e : adj_lis[v]) { ` `            ``if` `(!visited[e.to]) ` `                ``dfs(e.to, ` `                    ``v, ` `                    ``sum + e.wt, ` `                    ``visited); ` `        ``} ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String a[]) ` `    ``{ ` ` `  `        ``// Number of nodes ` `        ``int` `v = ``6``; ` `        ``Graph obj = ``new` `Graph(v); ` `        ``val = ``new` `long``[v]; ` `        ``boolean``[] visited ` `            ``= ``new` `boolean``[v]; ` ` `  `        ``int` `sum = ``0``; ` ` `  `        ``// Edge from a node to another ` `        ``// node with some weight ` `        ``int` `from[] = { ``2``, ``3``, ``5``, ``6``, ``4` `}; ` `        ``int` `to[] = { ``1``, ``1``, ``2``, ``2``, ``1` `}; ` `        ``int` `wt[] = { ``1``, ``4``, ``2``, ``50``, ``5` `}; ` ` `  `        ``for` `(``int` `i = ``0``; i < v - ``1``; i++) { ` `            ``sum += ``2` `* wt[i]; ` `            ``obj.add_edge(to[i] - ``1``, ` `                         ``from[i] - ``1``, ` `                         ``wt[i]); ` `        ``} ` ` `  `        ``obj.dfs(``0``, -``1``, ``0``, visited); ` `        ``long` `large = Integer.MIN_VALUE; ` ` `  `        ``// Loop to find largest ` `        ``// distance in a val. ` `        ``for` `(``int` `i = ``1``; i < val.length; ` `             ``i++) ` `            ``if` `(val[i] > large) ` `                ``large = val[i]; ` ` `  `        ``System.out.println(sum - large); ` `    ``} ` `} `

## C#

 `// C# program to implement  ` `// the above approach ` `using` `System; ` `using` `System.Collections.Generic; ` `class` `Graph ` `{ ` `    ``public` `class` `Edge ` `    ``{ ` ` `  `        ``// from - The source of an edge ` `        ``// to - destination of an edge ` `        ``// wt - distance between two nodes ` `        ``public` `int` `from``; ` `        ``public` `int` `to; ` `        ``public` `long` `wt; ` `        ``public` `Edge(``int` `a, ``int` `b, ``long` `w) ` `        ``{ ` `            ``from` `= a; ` `            ``to = b; ` `            ``wt = w; ` `        ``} ` `    ``} ` ` `  `    ``// adj_lis - It is used to ` `    ``// make the adjacency list of a tree ` ` `  `    ``// V - Total number of nodes in a tree ` ` `  `    ``// val - This array stores the ` `    ``// distance from node 1 to node 'n' ` `    ``public` `static` `List[] adj_lis; ` `    ``public` `static` `int` `V; ` `    ``public` `static` `long` `[]val; ` ` `  `    ``public` `Graph(``int` `v) ` `    ``{ ` `        ``V = v; ` `        ``adj_lis = ``new` `List[V]; ` `        ``for` `(``int` `i = 0; i < V; i++) ` `            ``adj_lis[i] = ``new` `List(); ` `    ``} ` ` `  `    ``// Method to add an edge between two nodes ` `    ``void` `add_edge(``int` `to, ``int` `from``, ``long` `wt) ` `    ``{ ` `        ``adj_lis[``from``].Add( ` `                 ``new` `Edge(``from``, to, wt)); ` `        ``adj_lis[to].Add( ` `               ``new` `Edge(to, ``from``, wt)); ` `    ``} ` ` `  `    ``// DFS method to find distance ` `    ``// between node 1 to other nodes ` `    ``void` `dfs(``int` `v, ` `            ``int` `par, ` `            ``long` `sum, ` `            ``bool``[] visited) ` `    ``{ ` `        ``val[v] = sum; ` `        ``visited[v] = ``true``; ` `        ``foreach` `(Edge e ``in` `adj_lis[v])  ` `        ``{ ` `            ``if` `(!visited[e.to]) ` `                ``dfs(e.to, v,  ` `                    ``sum + e.wt, visited); ` `        ``} ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String []a) ` `    ``{ ` ` `  `        ``// Number of nodes ` `        ``int` `v = 6; ` `        ``Graph obj = ``new` `Graph(v); ` `        ``val = ``new` `long``[v]; ` `        ``bool` `[]visited = ``new` `bool``[v]; ` ` `  `        ``int` `sum = 0; ` ` `  `        ``// Edge from a node to another ` `        ``// node with some weight ` `        ``int` `[]``from` `= { 2, 3, 5, 6, 4 }; ` `        ``int` `[]to = { 1, 1, 2, 2, 1 }; ` `        ``int` `[]wt = { 1, 4, 2, 50, 5 }; ` ` `  `        ``for` `(``int` `i = 0; i < v - 1; i++)  ` `        ``{ ` `            ``sum += 2 * wt[i]; ` `            ``obj.add_edge(to[i] - 1, ` `                       ``from``[i] - 1, wt[i]); ` `        ``} ` ` `  `        ``obj.dfs(0, -1, 0, visited); ` `        ``long` `large = ``int``.MinValue; ` ` `  `        ``// Loop to find largest ` `        ``// distance in a val. ` `        ``for` `(``int` `i = 1; i < val.Length; ` `            ``i++) ` `            ``if` `(val[i] > large) ` `                ``large = val[i]; ` ` `  `        ``Console.WriteLine(sum - large); ` `    ``} ` `} ` ` `  `// This code is contributed by Princi Singh `

Output:

```73
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.