Skip to content
Related Articles

Related Articles

Improve Article
Minimum cost of choosing 3 increasing elements in an array of size N
  • Last Updated : 02 Jun, 2021

Given two arrays arr[] and cost[] where cost[i] is the cost associated with arr[i], the task is to find the minimum cost of choosing three elements from the array such that arr[i] < arr[j] < arr[j].
Examples: 
 

Input: arr[] = {2, 4, 5, 4, 10}, cost[] = {40, 30, 20, 10, 40} 
Output: 90 
(2, 4, 5), (2, 4, 10) and (4, 5, 10) are 
the only valid triplets with cost 90.
Input: arr[] = {1, 2, 3, 4, 5, 6}, cost[] = {10, 13, 11, 14, 15, 12} 
Output: 33 
 

 

Naive approach: A basic approach is two-run three nested loops and to check every possible triplet. The time complexity of this approach will be O(n3).
Efficient approach: An efficient approach is to fix the middle element and search for the smaller element with minimum cost on its left and the larger element with minimum cost on its right in the given array. If a valid triplet is found then update the minimum cost far. The time complexity of this approach will be O(n2).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum required cost
int minCost(int arr[], int cost[], int n)
{
 
    // To store the cost of choosing three elements
    int costThree = INT_MAX;
 
    // Fix the middle element
    for (int j = 0; j < n; j++) {
 
        // Initialse cost of the first
        // and the third element
        int costI = INT_MAX, costK = INT_MAX;
 
        // Search for the first element
        // in the left subarray
        for (int i = 0; i < j; i++) {
 
            // If smaller element is found
            // then update the cost
            if (arr[i] < arr[j])
                costI = min(costI, cost[i]);
        }
 
        // Search for the third element
        // in the right subarray
        for (int k = j + 1; k < n; k++) {
 
            // If greater element is found
            // then update the cost
            if (arr[k] > arr[j])
                costK = min(costK, cost[k]);
        }
 
        // If a valid triplet was found then
        // update the minimum cost so far
        if (costI != INT_MAX && costK != INT_MAX) {
            costThree = min(costThree, cost[j]
                                           + costI
                                           + costK);
        }
    }
 
    // No such triplet found
    if (costThree == INT_MAX)
        return -1;
    return costThree;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 4, 5, 4, 10 };
    int cost[] = { 40, 30, 20, 10, 40 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << minCost(arr, cost, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
// Function to return the minimum required cost
static int minCost(int arr[], int cost[], int n)
{
 
    // To store the cost of choosing three elements
    int costThree = Integer.MAX_VALUE;
 
    // Fix the middle element
    for (int j = 0; j < n; j++)
    {
 
        // Initialse cost of the first
        // and the third element
        int costI = Integer.MAX_VALUE;
        int costK = Integer.MAX_VALUE;
 
        // Search for the first element
        // in the left subarray
        for (int i = 0; i < j; i++)
        {
 
            // If smaller element is found
            // then update the cost
            if (arr[i] < arr[j])
                costI = Math.min(costI, cost[i]);
        }
 
        // Search for the third element
        // in the right subarray
        for (int k = j + 1; k < n; k++)
        {
 
            // If greater element is found
            // then update the cost
            if (arr[k] > arr[j])
                costK = Math.min(costK, cost[k]);
        }
 
        // If a valid triplet was found then
        // update the minimum cost so far
        if (costI != Integer.MAX_VALUE &&
            costK != Integer.MAX_VALUE)
        {
            costThree = Math.min(costThree, cost[j] +
                                    costI + costK);
        }
    }
 
    // No such triplet found
    if (costThree == Integer.MAX_VALUE)
        return -1;
         
    return costThree;
}
 
// Driver code
public static void main (String[] args)
{
    int arr[] = { 2, 4, 5, 4, 10 };
    int cost[] = { 40, 30, 20, 10, 40 };
    int n = arr.length;
 
    System.out.println(minCost(arr, cost, n));
}
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
 
# Function to return the minimum required cost
def minCost(arr, cost, n):
 
    # To store the cost of choosing three elements
    costThree = 10**9
 
    # Fix the middle element
    for j in range(n):
 
        # Initialse cost of the first
        # and the third element
        costI = 10**9
        costK = 10**9
 
        # Search for the first element
        # in the left subarray
        for i in range(j):
 
            # If smaller element is found
            # then update the cost
            if (arr[i] < arr[j]):
                costI = min(costI, cost[i])
 
        # Search for the third element
        # in the right subarray
        for k in range(j + 1, n):
 
            # If greater element is found
            # then update the cost
            if (arr[k] > arr[j]):
                costK = min(costK, cost[k])
 
        # If a valid triplet was found then
        # update the minimum cost so far
        if (costI != 10**9 and costK != 10**9):
            costThree = min(costThree, cost[j] +
                               costI + costK)
 
    # No such triplet found
    if (costThree == 10**9):
        return -1
    return costThree
 
# Driver code
arr = [2, 4, 5, 4, 10]
cost = [40, 30, 20, 10, 40]
n = len(arr)
 
print(minCost(arr, cost, n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
         
// Function to return the
// minimum required cost
static int minCost(int []arr,
                   int []cost, int n)
{
 
    // To store the cost of
    // choosing three elements
    int costThree = int.MaxValue;
 
    // Fix the middle element
    for (int j = 0; j < n; j++)
    {
 
        // Initialse cost of the first
        // and the third element
        int costI = int.MaxValue;
        int costK = int.MaxValue;
 
        // Search for the first element
        // in the left subarray
        for (int i = 0; i < j; i++)
        {
 
            // If smaller element is found
            // then update the cost
            if (arr[i] < arr[j])
                costI = Math.Min(costI, cost[i]);
        }
 
        // Search for the third element
        // in the right subarray
        for (int k = j + 1; k < n; k++)
        {
 
            // If greater element is found
            // then update the cost
            if (arr[k] > arr[j])
                costK = Math.Min(costK, cost[k]);
        }
 
        // If a valid triplet was found then
        // update the minimum cost so far
        if (costI != int.MaxValue &&
            costK != int.MaxValue)
        {
            costThree = Math.Min(costThree, cost[j] +
                                    costI + costK);
        }
    }
 
    // No such triplet found
    if (costThree == int.MaxValue)
        return -1;
         
    return costThree;
}
 
// Driver code
static public void Main ()
{
    int []arr = { 2, 4, 5, 4, 10 };
    int []cost = { 40, 30, 20, 10, 40 };
    int n = arr.Length;
 
    Console.Write(minCost(arr, cost, n));
}
}
 
// This code is contributed by Sachin..

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the minimum required cost
function minCost(arr,cost,n)
{
    // To store the cost of choosing three elements
    let costThree = Number.MAX_VALUE;
   
    // Fix the middle element
    for (let j = 0; j < n; j++)
    {
   
        // Initialse cost of the first
        // and the third element
        let costI = Number.MAX_VALUE;
        let costK = Number.MAX_VALUE;
   
        // Search for the first element
        // in the left subarray
        for (let i = 0; i < j; i++)
        {
   
            // If smaller element is found
            // then update the cost
            if (arr[i] < arr[j])
                costI = Math.min(costI, cost[i]);
        }
   
        // Search for the third element
        // in the right subarray
        for (let k = j + 1; k < n; k++)
        {
   
            // If greater element is found
            // then update the cost
            if (arr[k] > arr[j])
                costK = Math.min(costK, cost[k]);
        }
   
        // If a valid triplet was found then
        // update the minimum cost so far
        if (costI != Number.MAX_VALUE &&
            costK != Number.MAX_VALUE)
        {
            costThree = Math.min(costThree, cost[j] +
                                    costI + costK);
        }
    }
   
    // No such triplet found
    if (costThree == Number.MAX_VALUE)
        return -1;
           
    return costThree;
}
 
// Driver code
let arr=[2, 4, 5, 4, 10];
let cost=[40, 30, 20, 10, 40 ];
let n = arr.length;
document.write(minCost(arr, cost, n));
 
 
// This code is contributed by unknown2108
 
</script>
Output: 
90

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes 




My Personal Notes arrow_drop_up
Recommended Articles
Page :