Minimum changes required to make all element in an array equal

• Difficulty Level : Basic
• Last Updated : 11 May, 2021

Given an array of length N, the task is to find minimum operation required to make all elements in the array equal.
Operation is as follows:

• Replace the value of one element of the array by one of its adjacent elements.

Examples:

Input: N = 4, arr[] = {2, 3, 3, 4}
Output: 2
Explanation:
Replace 2 and 4 by 3

Input: N = 4, arr[] = { 1, 2, 3, 4}
Output: 3

Approach:
Let us assume that after performing the required minimum changes all elements of the array will become X. It is given that we are only allowed to replace the value of an element of the array with its adjacent element, So X should be one of the elements of the array.
Also, as we need to make changes as minimum as possible X should be the maximum occurring element of the array. Once we find the value of X, we need only one change per non-equal element (elements which are not X) to make all elements of the array equal to X.

• Find the count of the maximum occurring element of the array.
• Minimum changes required to make all elements of the array equal is
count of all elements – count of maximum occurring element

Below is the implementation of the above approach:

CPP

 // C++ program to find minimum// changes required to make// all elements of the array equal#include using namespace std; // Function to count// of minimum changes// required to make all// elements equalint minChanges(int arr[], int n){     unordered_map umap;     // Store the count of    // each element as key    // value pair in unordered map    for (int i = 0; i < n; i++) {        umap[arr[i]]++;    }     int maxFreq = 0;     // Find the count of    // maximum occurring element    for (auto p : umap) {        maxFreq = max(maxFreq, p.second);    }     // Return count of all    // element minus count    // of maximum occurring element    return n - maxFreq;} // Driver codeint main(){     int arr[] = { 2, 3, 3, 4 };    int n = sizeof(arr) / sizeof(arr);     // Function call    cout << minChanges(arr, n) << '\n';     return 0;}

Java

 // Java program to find minimum// changes required to make// all elements of the array equalimport java.util.*; class GFG {     // Function to count of minimum changes    // required to make all elements equal    static int minChanges(int arr[], int n)    {         Map mp = new HashMap<>();         // Store the count of each element        // as key value pair in map        for (int i = 0; i < n; i++) {            if (mp.containsKey(arr[i])) {                mp.put(arr[i], mp.get(arr[i]) + 1);            }             else {                mp.put(arr[i], 1);            }        }         int maxElem = 0;         // Traverse through map and        // find the maximum occurring element        for (Map.Entry entry :             mp.entrySet()) {             maxElem = Math.max(maxElem, entry.getValue());        }         // Return count of all element minus        // count of maximum occurring element        return n - maxElem;    }     // Driver code    public static void main(String[] args)    {         int arr[] = { 2, 3, 3, 4 };         int n = arr.length;         // Function call        System.out.println(minChanges(arr, n));    }}

C#

 // C# program to find minimum// changes required to make// all elements of the array equal using System;using System.Collections.Generic; class GFG {     // Function to count of minimum changes    // required to make all elements equal    static int minChanges(int[] arr, int n)    {         Dictionary mp            = new Dictionary();         // Store the count of each element        // as key-value pair in Dictionary         for (int i = 0; i < n; i++) {            if (mp.ContainsKey(arr[i])) {                var val = mp[arr[i]];                mp.Remove(arr[i]);                mp.Add(arr[i], val + 1);            }            else {                mp.Add(arr[i], 1);            }        }         int maxElem = 0;         // Traverse through the Dictionary and        // find the maximum occurring element        foreach(KeyValuePair entry in mp)        {            maxElem = Math.Max(maxElem, entry.Value);        }         // Return count of all element minus        // count of maximum occurring element        return n - maxElem;    }     // Driver code    public static void Main(string[] args)    {         int[] arr = { 2, 3, 3, 4 };         int n = arr.Length;         // Function call        Console.WriteLine(minChanges(arr, n));    }}

Python3

 # Python3 program to find minimum# changes required to make# all elements of the array equal # Function to count of minimum changes# required to make all elements equaldef minChanges(arr, n):     mp = dict()     # Store the count of each element    # as key-value pair in Dictionary     for i in range(n):        if arr[i] in mp.keys():            mp[arr[i]] += 1        else:            mp[arr[i]] = 1     maxElem = 0     # Traverse through the Dictionary and    # find the maximum occurring element     for x in mp:        maxElem = max(maxElem, mp[x])     # Return count of all element minus    # count of maximum occurring element    return n - maxElem  # Driver code arr = [2, 3, 3, 4]n = len(arr) # Function callprint(minChanges(arr, n))

Javascript


Output:
2

My Personal Notes arrow_drop_up