Minimum number of bits of array elements required to be flipped to make all array elements equal
Given an array arr[] consisting of N positive integers, the task is to find the minimum number of bits of array elements required to be flipped to make all array elements equal.
Examples:
Input: arr[] = {3, 5}
Output: 2
Explanation:
Following are the flipping of bits of the array elements required:
- For element arr[0](= 3): Flipping the 3rd bit from the right modifies arr[0] to (= 7(111)2). Now, the array becomes {7, 5}.
- For element arr[0](= 7): Flipping the 2nd bit from the right modifies arr[0] to 5 (= (101)2). Now, the array becomes {5, 5}.
After performing the above operations, all the array elements are equal. Therefore, the total number of flips of bits required is 2.
Input: arr[] = {4, 6, 3, 4, 5}
Output: 5
Approach: The given problem can be solved by modifying the array element in such a way that the number of set bits and unset bits at every position between all array elements. Follow the below steps to solve the problem:
- Initialize two frequency arrays say fre0[] and fre1[] of size 32 for counting the frequency of 0 and 1 for every bit of array elements.
- Traverse the given array and for each array element, arr[i] if the jth bit of arr[i] is a set bit, then increment the frequency of fre1[j] by 1. Otherwise, increment the frequency of fre0[j] by 1.
- After completing the above steps, print the sum of the minimum of fre0[i] and fre1[i] for each bit i over the range [0, 32].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count minimum number // of bits required to be flipped // to make all array elements equal int makeEqual( int * arr, int n) { // Stores the count of unset bits int fre0[33] = { 0 }; // Stores the count of set bits int fre1[33] = { 0 }; // Traverse the array for ( int i = 0; i < n; i++) { int x = arr[i]; // Traverse the bit of arr[i] for ( int j = 0; j < 33; j++) { // If current bit is set if (x & 1) { // Increment fre1[j] fre1[j] += 1; } // Otherwise else { // Increment fre0[j] fre0[j] += 1; } // Right shift x by 1 x = x >> 1; } } // Stores the count of total moves int ans = 0; // Traverse the range [0, 32] for ( int i = 0; i < 33; i++) { // Update the value of ans ans += min(fre0[i], fre1[i]); } // Return the minimum number of // flips required return ans; } // Driver Code int main() { int arr[] = { 3, 5 }; int N = sizeof (arr) / sizeof (arr[0]); cout << makeEqual(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to count minimum number // of bits required to be flipped // to make all array elements equal static int makeEqual( int arr[], int n) { // Stores the count of unset bits int fre0[] = new int [ 33 ]; // Stores the count of set bits int fre1[] = new int [ 33 ]; // Traverse the array for ( int i = 0 ; i < n; i++) { int x = arr[i]; // Traverse the bit of arr[i] for ( int j = 0 ; j < 33 ; j++) { // If current bit is set if ((x & 1 ) != 0 ) { // Increment fre1[j] fre1[j] += 1 ; } // Otherwise else { // Increment fre0[j] fre0[j] += 1 ; } // Right shift x by 1 x = x >> 1 ; } } // Stores the count of total moves int ans = 0 ; // Traverse the range [0, 32] for ( int i = 0 ; i < 33 ; i++) { // Update the value of ans ans += Math.min(fre0[i], fre1[i]); } // Return the minimum number of // flips required return ans; } // Driver Code public static void main(String[] args) { int arr[] = { 3 , 5 }; int N = arr.length; System.out.print(makeEqual(arr, N)); } } // This code is contributed by Kingash |
Python3
# Python3 program for the above approach # Function to count minimum number # of bits required to be flipped # to make all array elements equal def makeEqual(arr, n): # Stores the count of unset bits fre0 = [ 0 ] * 33 # Stores the count of set bits fre1 = [ 0 ] * 33 # Traverse the array for i in range (n): x = arr[i] # Traverse the bit of arr[i] for j in range ( 33 ): # If current bit is set if (x & 1 ): # Increment fre1[j] fre1[j] + = 1 # Otherwise else : # Increment fre0[j] fre0[j] + = 1 # Right shift x by 1 x = x >> 1 # Stores the count of total moves ans = 0 # Traverse the range [0, 32] for i in range ( 33 ): # Update the value of ans ans + = min (fre0[i], fre1[i]) # Return the minimum number of # flips required return ans # Driver Code if __name__ = = '__main__' : arr = [ 3 , 5 ] N = len (arr) print (makeEqual(arr, N)) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; class GFG { // Function to count minimum number // of bits required to be flipped // to make all array elements equal static int makeEqual( int [] arr, int n) { // Stores the count of unset bits int [] fre0 = new int [33]; // Stores the count of set bits int [] fre1 = new int [33]; // Traverse the array for ( int i = 0; i < n; i++) { int x = arr[i]; // Traverse the bit of arr[i] for ( int j = 0; j < 33; j++) { // If current bit is set if ((x & 1) != 0) { // Increment fre1[j] fre1[j] += 1; } // Otherwise else { // Increment fre0[j] fre0[j] += 1; } // Right shift x by 1 x = x >> 1; } } // Stores the count of total moves int ans = 0; // Traverse the range [0, 32] for ( int i = 0; i < 33; i++) { // Update the value of ans ans += Math.Min(fre0[i], fre1[i]); } // Return the minimum number of // flips required return ans; } // Driver Code public static void Main() { int [] arr = { 3, 5 }; int N = arr.Length; Console.WriteLine(makeEqual(arr, N)); } } // This code is contributed by ukasp. |
Javascript
<script> // javascript program for the above approach // Function to count minimum number // of bits required to be flipped // to make all array elements equal function makeEqual(arr , n) { // Stores the count of unset bits var fre0 = Array(33).fill(0); // Stores the count of set bits var fre1 = Array(33).fill(0); // Traverse the array for (i = 0; i < n; i++) { var x = arr[i]; // Traverse the bit of arr[i] for (j = 0; j < 33; j++) { // If current bit is set if ((x & 1) != 0) { // Increment fre1[j] fre1[j] += 1; } // Otherwise else { // Increment fre0[j] fre0[j] += 1; } // Right shift x by 1 x = x >> 1; } } // Stores the count of total moves var ans = 0; // Traverse the range [0, 32] for (i = 0; i < 33; i++) { // Update the value of ans ans += Math.min(fre0[i], fre1[i]); } // Return the minimum number of // flips required return ans; } // Driver Code var arr = [ 3, 5 ]; var N = arr.length; document.write(makeEqual(arr, N)); // This code is contributed by aashish1995 </script> |
2
Time Complexity: O(N * log N)
Auxiliary Space: O(1)
Please Login to comment...