Skip to content
Related Articles

Related Articles

Improve Article

Minimize swaps to rearrange array such that parity of index and corresponding element is same

  • Last Updated : 09 Apr, 2021
Geek Week

Given an array A[], the task to find minimum swapping operations required to modify the given array A[] such that for every index in the array, parity(i) = parity(A[i]) where parity(x) = x % 2. If it’s impossible to obtain such an arrangement, then print -1.

Examples:

Input: A[] = { 2, 4, 3, 1, 5, 6 } 
Output:
Explanation: 
Swapping (4, 3) and (5, 6) modifies the array to [2, 3, 4, 1, 6, 5] such that the parity of i and A[i] is same for all indices.

Input: A[] = {1, 2, 5, 7} 
Output: -1 
Explanation: 
The given array cannot be rearranged as per required condition.

Approach: 
To solve the problem mentioned above an optimal approach is to choose such an index where parity(i) and parity(A[i]) aren’t the same.



  • Initialize two variables needodd and needeven to 0 which will store the parity of each element. Check the parity of index if it’s odd then increase needodd value by 1 otherwise increase needeven.
  • If needodd and needeven aren’t same, then required arrangement is not possible.
  • Otherwise, the final result is obtained by needodd variable, as it is the number of operations that are required. This is because, at any moment, we choose an odd element whose parity is not the same with parity of their index and similarly choose an even element and swap them.

Below is the implementation of the above approach:

C++




// C++ implementation to minimize
// swaps required to rearrange
// array such that parity of index and
// corresponding element is same
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// parity of number
int parity(int x)
{
    return x % 2;
     
}
 
// Function to return minimum
// number of operations required
int solve(int a[], int size)
{
     
    // Initialize needodd and
    // needeven value by 0
    int needeven = 0;
    int needodd = 0;
     
    for(int i = 0; i < size; i++)
    {
        if(parity(i) != parity(a[i]))
        {
             
            // Check if parity(i) is odd
            if(parity(i) % 2)
            {
                 
                // increase needodd
                // as we need odd no
                // at that position.
                needodd++;
            }
            else
            {
 
                // increase needeven
                // as we need even
                // number at that position
                needeven++;
            }
        }
    }
     
    // If needeven and needodd are unequal
    if(needeven != needodd)
        return -1;
    else
        return needodd;
}
 
// Driver Code
int main()
{
    int a[] = { 2, 4, 3, 1, 5, 6};
    int n = sizeof(a) / sizeof(a[0]);
 
    // Function call
    cout << solve(a, n) << endl;
 
    return 0;
}
 
// This code is contributed by venky07

Java




// Java implementation to minimize 
// swaps required to rearrange 
// array such that parity of index and 
// corresponding element is same
import java.util.*;
 
class GFG{
     
// Function to return the
// parity of number
static int parity(int x)
{
    return x % 2;
}
 
// Function to return minimum
// number of operations required
static int solve(int a[], int size)
{
     
    // Initialize needodd and
    // needeven value by 0
    int needeven = 0;
    int needodd = 0;
     
    for(int i = 0; i < size; i++)
    {
        if(parity(i) != parity(a[i]))
        {
             
            // Check if parity(i) is odd
            if(parity(i) % 2 == 1)
            {
                 
                // Increase needodd
                // as we need odd no
                // at that position.
                needodd++;
            }
            else
            {
                 
                // Increase needeven
                // as we need even
                // number at that position
                needeven++;
            }
        }
    }
     
    // If needeven and needodd are unequal
    if(needeven != needodd)
        return -1;
    else
        return needodd;
}
 
// Driver Code
public static void main (String[] args)
{
    int a[] = { 2, 4, 3, 1, 5, 6};
    int n = a.length;
     
    // Function call
    System.out.println(solve(a, n));
}
}
 
// This code is contributed by offbeat

Python3




# Python3 implementation to minimize
# swaps required to rearrange
# array such that parity of index and
# corresponding element is same
 
# Function to return the
# parity of number
def parity(x):
    return x % 2
 
# Function to return minimum
# number of operations required
 
def solve(a, size):
     
    # Initialize needodd and
    # needeven value by 0
    needeven = 0
    needodd = 0
    for i in range(size):
                 
        if parity(i)!= parity(a[i]):
             
            # Check if parity(i) is odd
            if parity(i) % 2:
                 
                # increase needodd
                # as we need odd no
                # at that position.
                needodd+= 1
            else:
                # increase needeven
                # as we need even
                # number at that position
                needeven+= 1
     
    # If needeven and needodd are unequal
    if needodd != needeven:
        return -1
         
    return needodd
     
# Driver code    
if __name__ =="__main__":
     
    a = [2, 4, 3, 1, 5, 6]
    n = len(a)
    print(solve(a, n))

C#




// C# implementation to minimize 
// swaps required to rearrange 
// array such that parity of index and 
// corresponding element is same
using System;
class GFG{
     
// Function to return the
// parity of number
static int parity(int x)
{
  return x % 2;
}
 
// Function to return minimum
// number of operations required
static int solve(int[] a, int size)
{    
  // Initialize needodd and
  // needeven value by 0
  int needeven = 0;
  int needodd = 0;
 
  for(int i = 0; i < size; i++)
  {
    if(parity(i) != parity(a[i]))
    {
      // Check if parity(i) is odd
      if(parity(i) % 2 == 1)
      {
        // Increase needodd
        // as we need odd no
        // at that position.
        needodd++;
      }
      else
      {
        // Increase needeven
        // as we need even
        // number at that position
        needeven++;
      }
    }
  }
 
  // If needeven and needodd are unequal
  if(needeven != needodd)
    return -1;
  else
    return needodd;
}
 
// Driver Code
public static void Main ()
{
  int[] a = {2, 4, 3, 1, 5, 6};
  int n = a.Length;
 
  // Function call
  Console.Write(solve(a, n));
}
}
 
// This code is contributed by Chitranayal

Javascript




<script>
 
// Javascript implementation to minimize
// swaps required to rearrange array such
// that parity of index and corresponding
// element is same
 
// Function to return the
// parity of number
function parity(x)
{
    return x % 2;
}
 
// Function to return minimum
// number of operations required
function solve(a, size)
{
     
    // Initialize needodd and
    // needeven value by 0
    let needeven = 0;
    let needodd = 0;
     
    for(let i = 0; i < size; i++)
    {
        if (parity(i) != parity(a[i]))
        {
             
            // Check if parity(i) is odd
            if (parity(i) % 2 == 1)
            {
                 
                // Increase needodd
                // as we need odd no
                // at that position.
                needodd++;
            }
            else
            {
                 
                // Increase needeven
                // as we need even
                // number at that position
                needeven++;
            }
        }
    }
     
    // If needeven and needodd are unequal
    if (needeven != needodd)
        return -1;
    else
        return needodd;
}
 
// Driver code
let a = [ 2, 4, 3, 1, 5, 6 ];
let n = a.length;
 
// Function call
document.write(solve(a, n));
 
// This code is contributed by rameshtravel07
 
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :