Related Articles

# Merge two BSTs with constant extra space

• Difficulty Level : Hard
• Last Updated : 04 Jun, 2021

Given two Binary Search Trees(BST), print the elements of both BSTs in sorted form.
Note: Both the BSTs will not have any common element.

Examples:

```Input
First BST:
3
/     \
1       5
Second BST:
4
/   \
2       6
Output: 1 2 3 4 5 6

Input:
First BST:
8
/ \
2   10
/
1
Second BST:
5
/
3
/
0
Output: 0 1 2 3 5 8 10```

The idea is to use the fact the leftmost element (first in inorder traversal) of the tree is the least element in a BST. So we compute this value for both the trees and print the smaller one, now we delete this printed element from the respective tree and update it. Then we recursively call our function with the updated tree. We do this until one of the trees is exhausted. Now we simply print the inorder traversal of the other tree.

Below is the implementation of above approach:

## C++

 `// C++ implementation of above approach``#include ``using` `namespace` `std;` `// Structure of a BST Node``class` `Node {``public``:``    ``int` `data;``    ``Node* left;``    ``Node* right;``    ``Node(``int` `x)``    ``{``        ``data = x;``        ``left = right = NULL;``    ``}``};` `// A utility function to print``// Inorder traversal of a Binary Tree``void` `inorder(Node* root)``{``    ``if` `(root != NULL) {``        ``inorder(root->left);``        ``cout << root->data << ``" "``;``        ``inorder(root->right);``    ``}``}` `// The function to print data``// of two BSTs in sorted order``void` `merge(Node* root1, Node* root2)``{``    ``// Base cases``    ``if` `(!root1 && !root2)``        ``return``;` `    ``// If the first tree is exhausted``    ``// simply print the inorder``    ``// traversal of the second tree``    ``if` `(!root1) {``        ``inorder(root2);``        ``return``;``    ``}` `    ``// If second tree is exhausted``    ``// simply print the inoreder``    ``// traversal of the first tree``    ``if` `(!root2) {``        ``inorder(root1);``        ``return``;``    ``}` `    ``// A temporary pointer currently``    ``// pointing to root of first tree``    ``Node* temp1 = root1;` `    ``// previous pointer to store the``    ``// parent of temporary pointer``    ``Node* prev1 = NULL;` `    ``// Traverse through the first tree until you reach``    ``// the leftmost element, which is the first element``    ``// of the tree in the inorder traversal.``    ``// This is the least element of the tree``    ``while` `(temp1->left) {``        ``prev1 = temp1;``        ``temp1 = temp1->left;``    ``}` `    ``// Another temporary pointer currently``    ``// pointing to root of second tree``    ``Node* temp2 = root2;` `    ``// Previous pointer to store the``    ``// parent of second temporary pointer``    ``Node* prev2 = NULL;` `    ``// Traverse through the second tree until you reach``    ``// the leftmost element, which is the first element of``    ``// the tree in inorder traversal.``    ``// This is the least element of the tree.``    ``while` `(temp2->left) {``        ``prev2 = temp2;``        ``temp2 = temp2->left;``    ``}` `    ``// Compare the least current least``    ``// elements of both the tree``    ``if` `(temp1->data <= temp2->data) {` `        ``// If first tree's element is smaller print it``        ``cout << temp1->data << ``" "``;` `        ``// If the node has no parent, that``        ``// means this node is the root``        ``if` `(prev1 == NULL) {` `            ``// Simply make the right``            ``// child of the root as new root``            ``merge(root1->right, root2);``        ``}` `        ``// If node has a parent``        ``else` `{` `            ``// As this node is the leftmost node,``            ``// it is certain that it will not have``            ``// a let child so we simply assign this``            ``// node's right pointer, which can be``            ``// either null or not, to its parent's left``            ``// pointer. This statement is``            ``// just doing the task of deleting the node` `            ``prev1->left = temp1->right;` `            ``// recursively call the merge``            ``// function with updated tree``            ``merge(root1, root2);``        ``}``    ``}``    ``else` `{` `        ``cout << temp2->data << ``" "``;` `        ``// If the node has no parent, that``        ``// means this node is the root``        ``if` `(prev2 == NULL) {` `            ``// Simply make the right child``            ``// of root as new root``            ``merge(root1, root2->right);``        ``}` `        ``// If node has a parent``        ``else` `{``            ``prev2->left = temp2->right;` `            ``// Recursively call the merge``            ``// function with updated tree``            ``merge(root1, root2);``        ``}``    ``}``}` `// Driver Code``int` `main()``{``    ``Node *root1 = NULL, *root2 = NULL;``    ``root1 = ``new` `Node(3);``    ``root1->left = ``new` `Node(1);``    ``root1->right = ``new` `Node(5);``    ``root2 = ``new` `Node(4);``    ``root2->left = ``new` `Node(2);``    ``root2->right = ``new` `Node(6);` `    ``// Print sorted nodes of both trees``    ``merge(root1, root2);` `    ``return` `0;``}`

## Java

 `// Java implementation of above approach``import` `java.util.*;` `class` `GFG{``  ` `// Structure of a BST Node``static` `class` `Node``{``    ``int` `data;``    ``Node left;``    ``Node right;``};` `static` `Node newNode(``int` `num)``{``    ``Node temp = ``new` `Node();``    ``temp.data = num;``    ``temp.left = temp.right = ``null``;``    ``return` `temp;``}` `// A utility function to print``// Inorder traversal of a Binary Tree``static` `void` `inorder(Node root)``{``    ``if` `(root != ``null``)``    ``{``        ``inorder(root.left);``        ``System.out.print(root.data + ``" "``);``        ``inorder(root.right);``    ``}``}` `// The function to print data``// of two BSTs in sorted order``static` `void` `merge(Node root1, Node root2)``{``    ` `    ``// Base cases``    ``if` `(root1 == ``null` `&& root2 == ``null``)``        ``return``;` `    ``// If the first tree is exhausted``    ``// simply print the inorder``    ``// traversal of the second tree``    ``if` `(root1 == ``null``)``    ``{``        ``inorder(root2);``        ``return``;``    ``}` `    ``// If second tree is exhausted``    ``// simply print the inoreder``    ``// traversal of the first tree``    ``if` `(root2 == ``null``)``    ``{``        ``inorder(root1);``        ``return``;``    ``}` `    ``// A temporary pointer currently``    ``// pointing to root of first tree``    ``Node temp1 = root1;` `    ``// previous pointer to store the``    ``// parent of temporary pointer``    ``Node prev1 = ``null``;` `    ``// Traverse through the first tree``    ``// until you reach the leftmost element,``    ``// which is the first element of the tree``    ``// in the inorder traversal.``    ``// This is the least element of the tree``    ``while` `(temp1.left != ``null``)``    ``{``        ``prev1 = temp1;``        ``temp1 = temp1.left;``    ``}` `    ``// Another temporary pointer currently``    ``// pointing to root of second tree``    ``Node temp2 = root2;` `    ``// Previous pointer to store the``    ``// parent of second temporary pointer``    ``Node prev2 = ``null``;` `    ``// Traverse through the second tree``    ``// until you reach the leftmost element,``    ``// which is the first element of``    ``// the tree in inorder traversal.``    ``// This is the least element of the tree.``    ``while` `(temp2.left != ``null``)``    ``{``        ``prev2 = temp2;``        ``temp2 = temp2.left;``    ``}` `    ``// Compare the least current least``    ``// elements of both the tree``    ``if` `(temp1.data <= temp2.data)``    ``{``        ` `        ``// If first tree's element is``        ``// smaller print it``        ``System.out.print(temp1.data + ``" "``);` `        ``// If the node has no parent, that``        ``// means this node is the root``        ``if` `(prev1 == ``null``)``        ``{``            ` `            ``// Simply make the right``            ``// child of the root as new root``            ``merge(root1.right, root2);``        ``}` `        ``// If node has a parent``        ``else``        ``{``            ` `            ``// As this node is the leftmost node,``            ``// it is certain that it will not have``            ``// a let child so we simply assign this``            ``// node's right pointer, which can be``            ``// either null or not, to its parent's left``            ``// pointer. This statement is``            ``// just doing the task of deleting the node``            ``prev1.left = temp1.right;` `            ``// recursively call the merge``            ``// function with updated tree``            ``merge(root1, root2);``        ``}``    ``}``    ``else``    ``{``        ``System.out.print(temp2.data + ``" "``);` `        ``// If the node has no parent, that``        ``// means this node is the root``        ``if` `(prev2 == ``null``)``        ``{``            ` `            ``// Simply make the right child``            ``// of root as new root``            ``merge(root1, root2.right);``        ``}` `        ``// If node has a parent``        ``else``        ``{``            ``prev2.left = temp2.right;` `            ``// Recursively call the merge``            ``// function with updated tree``            ``merge(root1, root2);``        ``}``    ``}``}` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``Node root1 = ``null``, root2 = ``null``;``    ` `    ``root1 = newNode(``3``);``    ``root1.left = newNode(``1``);``    ``root1.right = newNode(``5``);``    ` `    ``root2 = newNode(``4``);``    ``root2.left = newNode(``2``);``    ``root2.right = newNode(``6``);` `    ``// Print sorted nodes of both trees``    ``merge(root1, root2);``}``}` `// This code is contributed by ipg2016107`

## Python3

 `# Python3 implementation of above approach` `# Node of the binary tree``class` `node:``    ` `    ``def` `__init__ (``self``, key):``        ` `        ``self``.data ``=` `key``        ``self``.left ``=` `None``        ``self``.right ``=` `None` `# A utility function to print``# Inorder traversal of a Binary Tree``def` `inorder(root):``    ` `    ``if` `(root !``=` `None``):``        ``inorder(root.left)``        ``print``(root.data, end ``=` `" "``)``        ``inorder(root.right)` `# The function to print data``# of two BSTs in sorted order``def` `merge(root1, root2):``    ` `    ``# Base cases``    ``if` `(``not` `root1 ``and` `not` `root2):``        ``return` `    ``# If the first tree is exhausted``    ``# simply print the inorder``    ``# traversal of the second tree``    ``if` `(``not` `root1):``        ``inorder(root2)``        ``return` `    ``# If second tree is exhausted``    ``# simply print the inoreder``    ``# traversal of the first tree``    ``if` `(``not` `root2):``        ``inorder(root1)``        ``return` `    ``# A temporary pointer currently``    ``# pointing to root of first tree``    ``temp1 ``=` `root1` `    ``# previous pointer to store the``    ``# parent of temporary pointer``    ``prev1 ``=` `None` `    ``# Traverse through the first tree``    ``# until you reach the leftmost``    ``# element, which is the first element``    ``# of the tree in the inorder traversal.``    ``# This is the least element of the tree``    ``while` `(temp1.left):``        ``prev1 ``=` `temp1``        ``temp1 ``=` `temp1.left` `    ``# Another temporary pointer currently``    ``# pointing to root of second tree``    ``temp2 ``=` `root2` `    ``# Previous pointer to store the``    ``# parent of second temporary pointer``    ``prev2 ``=` `None` `    ``# Traverse through the second tree``    ``# until you reach the leftmost element,``    ``# which is the first element of the``    ``# tree in inorder traversal. This is``    ``# the least element of the tree.``    ``while` `(temp2.left):``        ``prev2 ``=` `temp2``        ``temp2 ``=` `temp2.left` `    ``# Compare the least current least``    ``# elements of both the tree``    ``if` `(temp1.data <``=` `temp2.data):` `        ``# If first tree's element is``        ``# smaller print it``        ``print``(temp1.data, end ``=` `" "``)` `        ``# If the node has no parent, that``        ``# means this node is the root``        ``if` `(prev1 ``=``=` `None``):` `            ``# Simply make the right``            ``# child of the root as new root``            ``merge(root1.right, root2)` `        ``# If node has a parent``        ``else``:` `            ``# As this node is the leftmost node,``            ``# it is certain that it will not have``            ``# a let child so we simply assign this``            ``# node's right pointer, which can be``            ``# either null or not, to its parent's left``            ``# pointer. This statement is``            ``# just doing the task of deleting the node``            ``prev1.left ``=` `temp1.right` `            ``# recursively call the merge``            ``# function with updated tree``            ``merge(root1, root2)``    ``else``:` `        ``print``(temp2.data, end ``=` `" "``)` `        ``# If the node has no parent, that``        ``# means this node is the root``        ``if` `(prev2 ``=``=` `None``):` `            ``# Simply make the right child``            ``# of root as new root``            ``merge(root1, root2.right)` `        ``# If node has a parent``        ``else``:``            ``prev2.left ``=` `temp2.right` `            ``# Recursively call the merge``            ``# function with updated tree``            ``merge(root1, root2)` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:` `    ``root1 ``=` `None``    ``root2 ``=` `None``    ``root1 ``=` `node(``3``)``    ``root1.left ``=` `node(``1``)``    ``root1.right ``=` `node(``5``)``    ``root2 ``=` `node(``4``)``    ``root2.left ``=` `node(``2``)``    ``root2.right ``=` `node(``6``)` `    ``# Print sorted nodes of both trees``    ``merge(root1, root2)` `# This code is contributed by mohit kumar 29`

## C#

 `// C# implementation of above approach``using` `System;` `// Structure of a BST Node``public` `class` `Node``{``    ``public` `int` `data;``    ``public` `Node left, right;``    ` `    ``public` `Node(``int` `item)``    ``{``        ``data = item;``        ``left = right = ``null``;``    ``}``}` `class` `GFG{``    ` `static` `Node root1;``static` `Node root2;` `// A utility function to print``// Inorder traversal of a Binary Tree``static` `void` `inorder(Node root)``{``    ``if` `(root != ``null``)``    ``{``        ``inorder(root.left);``        ``Console.WriteLine(root.data + ``" "``);``        ``inorder(root.right);``    ``}``}` `// The function to print data``// of two BSTs in sorted order``static` `void` `merge(Node root1, Node root2)``{``    ` `    ``// Base cases``    ``if` `(root1 == ``null` `&& root2 == ``null``)``    ``{``        ``return``;``    ``}``    ` `    ``// If the first tree is exhausted``    ``// simply print the inorder traversal``    ``// of the second tree``    ``if` `(root1 == ``null``)``    ``{ ``        ``inorder(root2);``        ``return``;``    ``}``    ` `    ``// If second tree is exhausted``    ``// simply print the inoreder``    ``// traversal of the first tree``    ``if` `(root2 == ``null``)``    ``{``        ``inorder(root1);``        ``return``;``    ``}``    ` `    ``// A temporary pointer currently``    ``// pointing to root of first tree``    ``Node temp1 = root1;``    ` `    ``// previous pointer to store the``    ``// parent of temporary pointer``    ``Node prev1 = ``null``;``    ` `    ``// Traverse through the first tree``    ``// until you reach the leftmost element,``    ``// which is the first element of the tree``    ``// in the inorder traversal.``    ``// This is the least element of the tree``    ``while` `(temp1.left != ``null``)``    ``{``        ``prev1 = temp1;``        ``temp1 = temp1.left;``    ``}``    ` `    ``// Another temporary pointer currently``    ``// pointing to root of second tree``    ``Node temp2 = root2;``    ` `    ``// Previous pointer to store the``    ``// parent of second temporary pointer``    ``Node prev2 = ``null``;``    ` `    ``// Traverse through the second tree until``    ``// you reach the leftmost element, which``    ``// is the first element of the tree in``    ``// inorder traversal. This is the least``    ``// element of the tree.``    ``while` `(temp2.left != ``null``)``    ``{``        ``prev2 = temp2;``        ``temp2 = temp2.left;``    ``}``    ` `    ``// Compare the least current least``    ``// elements of both the tree``    ``if` `(temp1.data <= temp2.data)``    ``{``        ` `        ``// If first tree's element is``        ``// smaller print it``        ``Console.Write(temp1.data + ``" "``);``        ` `        ``// If the node has no parent, that``        ``// means this node is the root``        ``if` `(prev1 == ``null``)``        ``{``            ` `            ``// Simply make the right``            ``// child of the root as new root``            ``merge(root1.right, root2);``        ``}``        ` `        ``// If node has a parent``        ``else``        ``{``            ` `            ``// As this node is the leftmost node,``            ``// it is certain that it will not have``            ``// a let child so we simply assign this``            ``// node's right pointer, which can be``            ``// either null or not, to its parent's``            ``// left pointer. This statement is just``            ``// doing the task of deleting the node``            ``prev1.left = temp1.right;``            ` `            ``// Recursively call the merge``            ``// function with updated tree``            ``merge(root1, root2);``        ``}``    ``}``    ``else``    ``{``        ``Console.Write(temp2.data + ``" "``);``        ` `        ``// If the node has no parent, that``        ``// means this node is the root``        ``if` `(prev2 == ``null``)``        ``{``            ` `            ``// Simply make the right child``            ``// of root as new root``            ``merge(root1, root2.right);``        ``}``        ` `        ``// If node has a parent``        ``else``        ``{``            ``prev2.left = temp2.right;``            ` `            ``// Recursively call the merge``            ``// function with updated tree``            ``merge(root1, root2);``        ``}``    ``}``}` `// Driver Code``static` `public` `void` `Main()``{``    ``GFG.root1 = ``new` `Node(3);``    ``GFG.root1.left = ``new` `Node(1);``    ``GFG.root1.right = ``new` `Node(5);``    ` `    ``GFG.root2 = ``new` `Node(4);``    ``GFG.root2.left = ``new` `Node(2);``    ``GFG.root2.right = ``new` `Node(6);``    ` `    ``// Print sorted nodes of both trees``    ``merge(root1, root2);``}``}` `// This code is contributed by avanitrachhadiya2155`

## Javascript

 ``
Output:

`1 2 3 4 5 6`

Time Complexity: O((M+N)(h1+h2)), where M and N are the number of nodes of the two trees and, h1 and h2 are the heights of tree respectively.
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up