Skip to content
Related Articles

Related Articles

Median of Bitwise XOR of all submatrices starting from the top left corner
  • Difficulty Level : Medium
  • Last Updated : 04 Jan, 2021

Given a 2D matrix mat[][] of size N * M, the task is to find the median of Bitwise XOR of all possible submatrices from the given matrix having topmost left element at (0, 0).

Examples:

Input : M[][] = { { 1, 2 }, { 2, 3 } } 
Output: 2.5 
Explanation: 
Bitwise XOR of submatrix whose topmost left corner is (0, 0) and bottommost right corner is (0, 0) is mat[0][0] = 1. 
Bitwise XOR of submatrix whose topmost left corner is (0, 0) and bottommost right corner is (0, 1) is mat[0][0] ^ mat[0][1] = 3. 
Bitwise XOR of submatrix whose topmost left corner is (0, 0) and bottommost right corner is (1, 0) is mat[0][0] ^ mat[1][0] = 3. 
Bitwise XOR of submatrix whose topmost left corner is (0, 0) and bottommost right corner is (1, 1) is mat[0][0] ^ mat[1][0] ^ mat[0][1] ^ mat[1][1] = 2. 
Median of bitwise XOR of all possible submatrix whose topmost left corner is (2 + 3) / 2 = 2.5.

Input : M[][] = { { 1, 5, 2 }, { 2, 3, 23 }, { 7, 43, 13 } }
Output: 5

Approach: The problem can be solved using Dynamic programming based on the following recurrence relation



dp[i][j] = dp[i – 1][j – 1] ^ dp[i][j – 1] ^ dp[i – 1][j] ^ mat[i][j]

mat[i][j]: Stores the Bitwise XOR of the submatrix whose topmost left corner is (0, 0) and bottom most right corner is (i, j).

Follow the steps below to solve the problem:

Below is the implementation of the above approach: 
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above appraoch
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
 
// Function to find the median of bitwise XOR
// of all the submatrix whose topmost leftmost
// corner is (0, 0)
double findMedXOR(int mat[][2], int N, int M)
{
 
    // dp[i][j]: Stores the bitwise XOR of
    // submatrix having top left corner
    // at (0, 0) and bottom right corner at (i, j)
    int dp[N][M];
 
    int med[N * M];
 
    dp[0][0] = mat[0][0];
 
    med[0] = dp[0][0];
 
    // Stores count of submatrix
    int len = 1;
 
    // Base Case
    for (int i = 1; i < N; i++) {
 
        dp[i][0]
            = dp[i - 1][0] ^ mat[i][0];
        med[len++] = dp[i][0];
    }
 
    // Base Case
    for (int i = 1; i < M; i++) {
 
        dp[0][i]
            = dp[0][i - 1] ^ mat[0][i];
 
        med[len++] = dp[0][i];
    }
 
    // Fill dp[][] using tabulation
    for (int i = 1; i < N; i++) {
 
        for (int j = 1; j < M; j++) {
 
            // Fill dp[i][j]
            dp[i][j] = dp[i - 1][j]
                       ^ dp[i][j - 1]
                       ^ dp[i - 1][j - 1]
                       ^ mat[i][j];
 
            med[len++] = dp[i][j];
        }
    }
 
    sort(med, med + len);
 
    if (len % 2 == 0) {
 
        return (med[(len / 2)]
                + med[(len / 2) - 1])
               / 2.0;
    }
 
    return med[len / 2];
}
 
// Driver Code
int main()
{
 
    int mat[][2] = { { 1, 2 }, { 2, 3 } };
 
    int N = sizeof(mat) / sizeof(mat[0]);
    int M = 2;
    cout << findMedXOR(mat, N, M);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
class GFG
{
 
  // Function to find the median of bitwise XOR
  // of all the submatrix whose topmost leftmost
  // corner is (0, 0)
  static double findMedXOR(int mat[][], int N, int M)
  {
 
    // dp[i][j]: Stores the bitwise XOR of
    // submatrix having top left corner
    // at (0, 0) and bottom right corner at (i, j)
    int dp[][] = new int[N][M];
    int med[] = new int[N * M];
    dp[0][0] = mat[0][0];
    med[0] = dp[0][0];
 
    // Stores count of submatrix
    int len = 1;
 
    // Base Case
    for (int i = 1; i < N; i++)
    {
      dp[i][0] = dp[i - 1][0] ^ mat[i][0];
      med[len++] = dp[i][0];
    }
 
    // Base Case
    for (int i = 1; i < M; i++)
    {
 
      dp[0][i] = dp[0][i - 1] ^ mat[0][i];
      med[len++] = dp[0][i];
    }
 
    // Fill dp[][] using tabulation
    for (int i = 1; i < N; i++)
    {
      for (int j = 1; j < M; j++)
      {
 
        // Fill dp[i][j]
        dp[i][j] = dp[i - 1][j]
          ^ dp[i][j - 1]
          ^ dp[i - 1][j - 1]
          ^ mat[i][j];
 
        med[len++] = dp[i][j];
      }
    }
    Arrays.sort(med);
    if (len % 2 == 0)
    {
      return (med[(len / 2)]
              + med[(len / 2) - 1])
        / 2.0;
    }
    return med[len / 2];
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int mat[][] = { { 1, 2 }, { 2, 3 } };
    int N = mat.length;
    int M = 2;
    System.out.println(findMedXOR(mat, N, M));
  }
}
 
// This code is contributed by susmitakundugoaldanga

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to implement
# the above approach
 
# Function to find the median of bitwise XOR
# of all the submatrix whose topmost leftmost
# corner is (0, 0)
def findMedXOR(mat, N, M):
   
    # dp[i][j]: Stores the bitwise XOR of
    # submatrix having top left corner
    # at (0, 0) and bottom right corner at (i, j)
    dp = [[0 for i in range(M)] for j in range(N)];
    med = [0] * (N * M);
    dp[0][0] = mat[0][0];
    med[0] = dp[0][0];
 
    # Stores count of submatrix
    len = 1;
 
    # Base Case
    for i in range(1, N):
        dp[i][0] = dp[i - 1][0] ^ mat[i][0];
        med[len] = dp[i][0];
        len += 1;
 
    # Base Case
    for i in range(1, M):
        dp[0][i] = dp[0][i - 1] ^ mat[0][i];
        med[len] = dp[0][i];
        len += 1
 
    # Fill dp using tabulation
    for i in range(1, N):
        for j in range(1, M):
           
            # Fill dp[i][j]
            dp[i][j] = dp[i - 1][j] ^ dp[i][j - 1] ^ dp[i - 1][j - 1] ^ mat[i][j];
            med[len] = dp[i][j];
            len += 1
 
    med.sort();
    if (len % 2 == 0):
        return (med[(len // 2)] + med[(len // 2) - 1]) / 2.0;
    return med[len // 2];
 
# Driver code
if __name__ == '__main__':
    mat = [[1, 2], [2, 3]];
    N = len(mat[0]);
    M = 2;
    print(findMedXOR(mat, N, M));
 
    # This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
class GFG
{
 
  // Function to find the median of bitwise XOR
  // of all the submatrix whose topmost leftmost
  // corner is (0, 0)
  static double findMedXOR(int [,]mat, int N, int M)
  {
 
    // dp[i,j]: Stores the bitwise XOR of
    // submatrix having top left corner
    // at (0, 0) and bottom right corner at (i, j)
    int [,]dp = new int[N, M];
    int []med = new int[N * M];
    dp[0, 0] = mat[0, 0];
    med[0] = dp[0, 0];
 
    // Stores count of submatrix
    int len = 1;
 
    // Base Case
    for (int i = 1; i < N; i++)
    {
      dp[i, 0] = dp[i - 1, 0] ^ mat[i, 0];
      med[len++] = dp[i, 0];
    }
 
    // Base Case
    for (int i = 1; i < M; i++)
    {
 
      dp[0, i] = dp[0, i - 1] ^ mat[0, i];
      med[len++] = dp[0, i];
    }
 
    // Fill [,]dp using tabulation
    for (int i = 1; i < N; i++)
    {
      for (int j = 1; j < M; j++)
      {
 
        // Fill dp[i,j]
        dp[i, j] = dp[i - 1, j]
          ^ dp[i, j - 1]
          ^ dp[i - 1, j - 1]
          ^ mat[i, j];
 
        med[len++] = dp[i, j];
      }
    }
    Array.Sort(med);
    if (len % 2 == 0)
    {
      return (med[(len / 2)]
              + med[(len / 2) - 1])
        / 2.0;
    }
    return med[len / 2];
  }
 
  // Driver code
  public static void Main(String[] args)
  {
    int [,]mat = { { 1, 2 }, { 2, 3 } };
    int N = mat.GetLength(0);
    int M = 2;
    Console.WriteLine(findMedXOR(mat, N, M));
  }
}
 
// This code is contributed by 29AjayKumar

chevron_right


Output: 

2.5

 

Time Complexity: O(N * M) 
Auxiliary Space: O(N * M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :