Maximum product of 4 adjacent elements in matrix

Given a square matrix, find the maximum product of four adjacent elements of matrix. The adjacent elements of matrix can be top, down, left, right, diagonal or anti diagonal. The four or more numbers should be adjacent to each other.
Note: n should be greater than or equal to 4 i.e n >= 4

Examples :

Input : n = 4
        {{6, 2, 3 4},
         {5, 4, 3, 1},
         {7, 4, 5, 6},
         {8, 3, 1, 0}}

Output : 1680 

Explanation:
Multiplication of 6 5 7 8 produces maximum
result and all element are adjacent to 
each other in one direction

Input : n = 5
        {{1, 2, 3, 4, 5},
         {6, 7, 8, 9, 1},
         {2, 3, 4, 5, 6},
         {7, 8, 9, 1, 0},
         {9, 6, 4, 2, 3}}


Output: 3024

Explanation:
Multiplication of 6 7 8 9 produces maximum 
result and all elements are adjacent to
each other in one direction.

Asked in : Tolexo

Approach:
1. Group 4 elements which are adjacent to each other in each row and calculate their maximum result.
2. Group 4 elements which are adjacent to each other in each column and calculate their maximum results.
3. Group 4 elements which are adjacent to each other in diagonal and calculate their maximum results.
4. Group 4 elements which are adjacent to each other in anti diagonal and calculate their maximum results.
5. Compare of all calculated maximum results.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find out the maximum product
// in the matrix which four elements are 
// adjacent to each other in one direction
#include <bits/stdc++.h>
using namespace std;
  
const int n = 5;
  
// function to find max product
int FindMaxProduct(int arr[][n], int n)
{
    int max = 0, result;
  
    // iterate the rows.
    for (int i = 0; i < n; i++) 
    {
  
        // iterate the columns.
        for (int j = 0; j < n; j++) 
        {
  
            // check the maximum product 
            // in horizontal row.
            if ((j - 3) >= 0) 
            {
                result = arr[i][j] * arr[i][j - 1] *
                    arr[i][j - 2] * arr[i][j - 3];
                  
                if (max < result)
                    max = result;
            }
  
            // check the maximum product 
            // in vertical row.
            if ((i - 3) >= 0) 
            {
                result = arr[i][j] * arr[i - 1][j] *
                    arr[i - 2][j] * arr[i - 3][j];
                  
                if (max < result)
                    max = result;
            }
  
            // check the maximum product in
            // diagonal and anti - diagonal
            if ((i - 3) >= 0 && (j - 3) >= 0) 
            {
                result = arr[i][j] * arr[i - 1][j - 1] *
                    arr[i - 2][j - 2] * arr[i - 3][j - 3];
                  
                if (max < result)
                    max = result;
            }
        }
    }
  
    return max;
}
  
// driver code
int main()
{
  
    /* int arr[][4] = {{6, 2, 3, 4}, 
                    {5, 4, 3, 1},
                    {7, 4, 5, 6},
                    {8, 3, 1, 0}};*/
    /* int arr[][5] = {{1, 2, 1, 3, 4},
                    {5, 6, 3, 9, 2},
                    {7, 8, 8, 1, 2},
                    {1, 0, 7, 9, 3},
                    {3, 0, 8, 4, 9}};*/
                          
    int arr[][5] = {{1, 2, 3, 4, 5},
                    {6, 7, 8, 9, 1},
                    {2, 3, 4, 5, 6},
                    {7, 8, 9, 1, 0},
                    {9, 6, 4, 2, 3}};
  
    cout << FindMaxProduct(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find out the
// maximum product in the matrix
// which four elements are adjacent
// to each other in one direction
class GFG 
{
static final int n = 5;
  
// function to find max product
static int FindMaxProduct(int arr[][], int n) 
{
    int max = 0, result;
  
    // iterate the rows.
    for (int i = 0; i < n; i++) 
    {
    // iterate the columns.
    for (int j = 0; j < n; j++) 
    {
        // check the maximum product
        // in horizontal row.
        if ((j - 3) >= 0
        {
        result = arr[i][j] * arr[i][j - 1] * 
                arr[i][j - 2] * arr[i][j - 3];
        if (max < result)
            max = result;
        }
  
        // check the maximum product
        // in vertical row.
        if ((i - 3) >= 0
        {
        result = arr[i][j] * arr[i - 1][j] * 
                arr[i - 2][j] * arr[i - 3][j];
  
        if (max < result)
            max = result;
        }
  
        // check the maximum product in
        // diagonal and anti - diagonal
        if ((i - 3) >= 0 && (j - 3) >= 0
        {
        result = arr[i][j] * arr[i - 1][j - 1] * 
                arr[i - 2][j - 2] * arr[i - 3][j - 3];
  
        if (max < result)
            max = result;
        }
    }
    }
  
    return max;
}
  
// Driver code
public static void main(String[] args) 
{
  
    /* int arr[][4] = {{6, 2, 3, 4},
                       {5, 4, 3, 1},
                       {7, 4, 5, 6},
                       {8, 3, 1, 0}};*/
    /* int arr[][5] = {{1, 2, 1, 3, 4},
                       {5, 6, 3, 9, 2},
                       {7, 8, 8, 1, 2},
                       {1, 0, 7, 9, 3},
                       {3, 0, 8, 4, 9}};*/
  
    int arr[][] = {{1, 2, 3, 4, 5},
                {6, 7, 8, 9, 1},
                {2, 3, 4, 5, 6},
                {7, 8, 9, 1, 0},
                    {9, 6, 4, 2, 3}};
  
    System.out.print(FindMaxProduct(arr, n));
}
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python 3

# Python 3 program to find out the maximum
# product in the matrix which four elements
# are adjacent to each other in one direction
n = 5

# function to find max product
def FindMaxProduct(arr, n):

max = 0

# iterate the rows.
for i in range(n):

# iterate the columns.
for j in range( n):

# check the maximum product
# in horizontal row.
if ((j – 3) >= 0):
result = (arr[i][j] * arr[i][j – 1] *
arr[i][j – 2] * arr[i][j – 3])

if (max < result): max = result # check the maximum product # in vertical row. if ((i - 3) >= 0) :
result = (arr[i][j] * arr[i – 1][j] *
arr[i – 2][j] * arr[i – 3][j])

if (max < result): max = result # check the maximum product in # diagonal and anti - diagonal if ((i - 3) >= 0 and (j – 3) >= 0):
result = (arr[i][j] * arr[i – 1][j – 1] *
arr[i – 2][j – 2] * arr[i – 3][j – 3])

if (max < result): max = result return max # Driver code if __name__ == "__main__": # int arr[][4] = {{6, 2, 3, 4}, # {5, 4, 3, 1}, # {7, 4, 5, 6}, # {8, 3, 1, 0}}; # int arr[][5] = {{1, 2, 1, 3, 4}, # {5, 6, 3, 9, 2}, # {7, 8, 8, 1, 2}, # {1, 0, 7, 9, 3}, # {3, 0, 8, 4, 9}}; arr = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 1], [2, 3, 4, 5, 6], [7, 8, 9, 1, 0], [9, 6, 4, 2, 3]] print(FindMaxProduct(arr, n)) # This code is contributed by ita_c [tabby title="C#"]

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find out the
// maximum product in the matrix
// which four elements are adjacent
// to each other in one direction
using System;
  
public class GFG {
      
    static int n = 5;
  
// Function to find max product
static int FindMaxProduct(int[,] arr, int n) 
{
    int max = 0, result;
  
    // iterate the rows
    for (int i = 0; i < n; i++) {
          
    // iterate the columns
    for (int j = 0; j < n; j++) {
          
        // check the maximum product
        // in horizontal row.
        if ((j - 3) >= 0) {
              
        result = arr[i, j] * arr[i, j - 1] * 
                             arr[i, j - 2] *
                             arr[i, j - 3];
                  
        if (max < result)
            max = result;
        }
  
        // check the maximum product
        // in vertical row.
        if ((i - 3) >= 0) {
        result = arr[i, j] * arr[i - 1, j] * 
                             arr[i - 2, j] *
                             arr[i - 3, j];
  
        if (max < result)
            max = result;
        }
  
        // check the maximum product in
        // diagonal and anti - diagonal
        if ((i - 3) >= 0 && (j - 3) >= 0) 
        {
        result = arr[i, j] * arr[i - 1, j - 1] * 
                             arr[i - 2, j - 2] * 
                             arr[i - 3, j - 3];
  
        if (max < result)
            max = result;
        }
    }
    }
  
    return max;
}
  
    // Driver Code
    static public void Main ()
    {
    int[,]arr = {{1, 2, 3, 4, 5},
                 {6, 7, 8, 9, 1},
                 {2, 3, 4, 5, 6},
                 {7, 8, 9, 1, 0},
                 {9, 6, 4, 2, 3}};
                  
    Console.Write(FindMaxProduct(arr, n));
    }
}
  
// This code is contributed by Shrikant13

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find out the maximum product
// in the matrix which four elements are 
// adjacent to each other in one direction
$n = 5;
  
// function to find max product
function FindMaxProduct( $arr, $n)
{
    $max = 0; $result;
  
    // iterate the rows.
    for ( $i = 0; $i < $n; $i++) 
    {
  
        // iterate the columns.
        for ( $j = 0; $j < $n; $j++) 
        {
  
            // check the maximum product 
            // in horizontal row.
            if (($j - 3) >= 0) 
            {
                $result = $arr[$i][$j] * 
                          $arr[$i][$j - 1] *
                          $arr[$i][$j - 2] * 
                          $arr[$i][$j - 3];
                  
                if ($max < $result)
                    $max = $result;
            }
  
            // check the maximum product 
            // in vertical row.
            if (($i - 3) >= 0) 
            {
                $result = $arr[$i][$j] * 
                          $arr[$i - 1][$j] *
                          $arr[$i - 2][$j] * 
                          $arr[$i - 3][$j];
                  
                if ($max < $result)
                    $max = $result;
            }
  
            // check the maximum product in
            // diagonal and anti - diagonal
            if (($i - 3) >= 0 and ($j - 3) >= 0) 
            {
                $result = $arr[$i][$j] * 
                          $arr[$i - 1][$j - 1] *
                          $arr[$i - 2][$j - 2] * 
                          $arr[$i - 3][$j - 3];
                  
                if ($max < $result)
                    $max = $result;
            }
        }
    }
  
    return $max;
}
      
    // Driver Code                        
    $arr = array(array(1, 2, 3, 4, 5),
                 array(6, 7, 8, 9, 1),
                 array(2, 3, 4, 5, 6),
                 array(7, 8, 9, 1, 0),
                 array(9, 6, 4, 2, 3));
   
    echo FindMaxProduct($arr, $n);
  
// This code is contributed by anuj_67.
?>

chevron_right



Output:

3024


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : shrikanth13, vt_m, Ita_c



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.