Skip to content
Related Articles

Related Articles

Improve Article
Maximum possible GCD after replacing at most one element in the given array
  • Last Updated : 19 Apr, 2021

Given an array arr[] of size N > 1. The task is to find the maximum possible GCD of the array by replacing at most one element.
Examples: 
 

Input: arr[] = {6, 7, 8} 
Output:
Replace 7 with 2 and gcd(6, 2, 8) = 2 
which is maximum possible.
Input: arr[] = {12, 18, 30} 
Output:
 

 

Approach: 
 

  • Idea is to find the GCD value of all the sub-sequences of length (N – 1) and removing the element which has to be replaced in the sub-sequence as it can be replaced with any other element already in the subsequence. The maximum GCD found would be the answer.
  • To find the GCD of the sub-sequences optimally, maintain a prefixGCD[] and a suffixGCD[] array using single state dynamic programming.
  • The maximum value of GCD(prefixGCD[i – 1], suffixGCD[i + 1]) is the required answer. Also note that suffixGCD[1] and prefixGCD[N – 2] also need to be compared in case the first or the last element has to be replaced.

Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum
// possible gcd after replacing
// a single element
int MaxGCD(int a[], int n)
{
 
    // Prefix and Suffix arrays
    int Prefix[n + 2];
    int Suffix[n + 2];
 
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1) {
        Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1) {
        Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    int ans = max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1) {
        ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { 6, 7, 8 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << MaxGCD(a, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return the maximum
// possible gcd after replacing
// a single element
static int MaxGCD(int a[], int n)
{
 
    // Prefix and Suffix arrays
    int []Prefix = new int[n + 2];
    int []Suffix = new int[n + 2];
 
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1)
    {
        Prefix[i] = __gcd(Prefix[i - 1],
                               a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1)
    {
        Suffix[i] = __gcd(Suffix[i + 1],
                               a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    int ans = Math.max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1)
    {
        ans = Math.max(ans, __gcd(Prefix[i - 1],
                                  Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 6, 7, 8 };
    int n = a.length;
 
    System.out.println(MaxGCD(a, n));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
from math import gcd as __gcd
 
# Function to return the maximum
# possible gcd after replacing
# a single element
def MaxGCD(a, n) :
 
    # Prefix and Suffix arrays
    Prefix = [0] * (n + 2);
    Suffix = [0] * (n + 2);
 
    # Single state dynamic programming relation
    # for storing gcd of first i elements
    # from the left in Prefix[i]
    Prefix[1] = a[0];
     
    for i in range(2, n + 1) :
        Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]);
 
    # Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    # Single state dynamic programming relation
    # for storing gcd of all the elements having
    # index greater than or equal to i in Suffix[i]
    for i in range(n - 1, 0, -1) :
        Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]);
 
    # If first or last element of
    # the array has to be replaced
    ans = max(Suffix[2], Prefix[n - 1]);
 
    # If any other element is replaced
    for i in range(2, n) :
        ans = max(ans, __gcd(Prefix[i - 1],
                             Suffix[i + 1]));
 
    # Return the maximized gcd
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 6, 7, 8 ];
    n = len(a);
 
    print(MaxGCD(a, n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the maximum
// possible gcd after replacing
// a single element
static int MaxGCD(int []a, int n)
{
 
    // Prefix and Suffix arrays
    int []Prefix = new int[n + 2];
    int []Suffix = new int[n + 2];
 
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1)
    {
        Prefix[i] = __gcd(Prefix[i - 1],
                            a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1)
    {
        Suffix[i] = __gcd(Suffix[i + 1],
                            a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    int ans = Math.Max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1)
    {
        ans = Math.Max(ans, __gcd(Prefix[i - 1],
                                Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 6, 7, 8 };
    int n = a.Length;
 
    Console.WriteLine(MaxGCD(a, n));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation of the approach
 
function gcd(a, b) {
  if (b==0) {
    return a;
  }
 
  return gcd(b, a % b);
}
// Function to return the maximum
// possible gcd after replacing
// a single element
function MaxGCD(a, n)
{
 
    // Prefix and Suffix arrays
    var Prefix = Array(n + 2).fill(0);
    var Suffix = Array(n + 2).fill(0);
 
    var i;
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (i = 2; i <= n; i++) {
        Prefix[i] = gcd(Prefix[i - 1], a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (i = n - 1; i >= 1; i--) {
        Suffix[i] = gcd(Suffix[i + 1], a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    var ans = Math.max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (i = 2; i < n; i++) {
        ans = Math.max(ans, gcd(Prefix[i - 1],
        Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
// Driver code
    var a = [6, 7, 8];
    n = a.length;
 
    document.write(MaxGCD(a, n));
 
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :