Maximum path sum in a triangle.

We have given numbers in form of triangle, by starting at the top of the triangle and moving to adjacent numbers on the row below, find the maximum total from top to bottom.

Examples :

Input : 
   3
  7 4
 2 4 6
8 5 9 3
Output : 23
Explanation : 3 + 7 + 4 + 9 = 23 

Input :
   8
 -4 4
 2 2 6
1 1 1 1
Output : 19
Explanation : 8 + 4 + 6 + 1 = 19 


We can go through the brute force by checking every possible path but that is much time taking so we should try to solve this problem with the help of dynamic programming which reduces the time complexity.
If we should left shift every element and put 0 at each empty position to make it a regular matrix, then our problem looks like minimum cost path.
So, after converting our input triangle elements into a regular matrix we should apply the dynamic programmic concept to find the maximum path sum.
Applying, DP in bottom-up manner we should solve our problem as:
Example:

   3
  7 4
 2 4 6
8 5 9 3

Step 1 :
3 0 0 0
7 4 0 0
2 4 6 0
8 5 9 3

Step 2 :
3  0  0  0
7  4  0  0
10 13 15 0

Step 3 :
3  0  0  0
20 19 0  0

Step 4:
23 0 0 0

output : 23

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for Dynamic
// Programming implementation of
// Max sum problem in a triangle 
#include<bits/stdc++.h>
using namespace std;
#define N 3
  
//  Function for finding maximum sum
int maxPathSum(int tri[][N], int m, int n)
{
     // loop for bottom-up calculation
     for (int i=m-1; i>=0; i--)
     {
        for (int j=0; j<=i; j++)
        {
            // for each element, check both
            // elements just below the number
            // and below right to the number
            // add the maximum of them to it
            if (tri[i+1][j] > tri[i+1][j+1])
                tri[i][j] += tri[i+1][j];
            else
                tri[i][j] += tri[i+1][j+1];
        }
     }
  
     // return the top element
     // which stores the maximum sum
     return tri[0][0];
}
  
/* Driver program to test above functions */
int main()
{
   int tri[N][N] = {  {1, 0, 0},
                      {4, 8, 0},
                      {1, 5, 3} };
   cout << maxPathSum(tri, 2, 2);
   return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program for Dynamic 
// Programming implementation of
// Max sum problem in a triangle 
import java.io.*;
  
class GFG {
          
    static int N = 3;
      
    // Function for finding maximum sum
    static int maxPathSum(int tri[][], int m, int n)
    {
        // loop for bottom-up calculation
        for (int i = m - 1; i >= 0; i--)
        {
            for (int j = 0; j <= i; j++)
            {
                // for each element, check both
                // elements just below the number
                // and below right to the number
                // add the maximum of them to it
                if (tri[i + 1][j] > tri[i + 1][j + 1])
                    tri[i][j] += tri[i + 1][j];
                else
                    tri[i][j] += tri[i + 1][j + 1];
            }
        }
      
        // return the top element
        // which stores the maximum sum
        return tri[0][0];
    }
      
    /* Driver program to test above functions */
    public static void main (String[] args)
    {
        int tri[][] = { {1, 0, 0},
                        {4, 8, 0},
                        {1, 5, 3} };
        System.out.println ( maxPathSum(tri, 2, 2));
    }
}
  
// This code is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program for
# Dynamic Programming
# implementation of Max
# sum problem in a
# triangle
  
N = 3
  
# Function for finding maximum sum
def maxPathSum(tri, m, n):
  
    # loop for bottom-up calculation
    for i in range(m-1, -1, -1):
        for j in range(i+1):
  
            # for each element, check both
            # elements just below the number
            # and below right to the number
            # add the maximum of them to it
            if (tri[i+1][j] > tri[i+1][j+1]):
                tri[i][j] += tri[i+1][j]
            else:
                tri[i][j] += tri[i+1][j+1]
  
    # return the top element
    # which stores the maximum sum
    return tri[0][0]
  
# Driver program to test above function
  
tri = [[1, 0, 0],
       [4, 8, 0],
       [1, 5, 3]]
print(maxPathSum(tri, 2, 2))
  
# This code is contributed
# by Soumen Ghosh.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program for Dynamic Programming
// implementation of Max sum problem 
// in a triangle 
using System;
  
class GFG {
      
    // Function for finding maximum sum
    static int maxPathSum(int [,]tri, 
                          int m, int n)
    {
        // loop for bottom-up calculation
        for (int i = m - 1; i >= 0; i--)
        {
            for (int j = 0; j <= i; j++)
            {
                // for each element, 
                // check both elements
                // just below the number
                // and below right to
                // the number add the
                // maximum of them to it
                if (tri[i + 1,j] > 
                       tri[i + 1,j + 1])
                    tri[i,j] += 
                           tri[i + 1,j];
                else
                    tri[i,j] += 
                       tri[i + 1,j + 1];
            }
        }
      
        // return the top element
        // which stores the maximum sum
        return tri[0,0];
    }
      
    /* Driver program to test above
    functions */
    public static void Main ()
    {
        int [,]tri = { {1, 0, 0},
                        {4, 8, 0},
                        {1, 5, 3} };
                          
        Console.Write ( 
             maxPathSum(tri, 2, 2));
    }
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program for Dynamic
// Programming implementation of
// Max sum problem in a triangle 
  
// Function for finding
// maximum sum
function maxPathSum($tri, $m, $n)
{
    // loop for bottom-up
    // calculation
    for ( $i = $m - 1; $i >= 0; $i--)
    {
        for ($j = 0; $j <= $i; $j++)
        {
            // for each element, check 
            // both elements just below 
            // the number and below right 
            // to the number add the maximum
            // of them to it
            if ($tri[$i + 1][$j] > $tri[$i + 1]
                                       [$j + 1])
                $tri[$i][$j] += $tri[$i + 1][$j];
            else
                $tri[$i][$j] += $tri[$i + 1]
                                    [$j + 1];
        }
    }
  
    // return the top element
    // which stores the maximum sum
    return $tri[0][0];
}
  
// Driver Code
$tri= array(array(1, 0, 0),
            array(4, 8, 0),
            array(1, 5, 3));
echo maxPathSum($tri, 2, 2);
  
// This code is contributed by ajit
?>

chevron_right



Output :

14

This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : jit_t, nitin mittal