Maximum number of operations required such that no pairs from a Matrix overlap

Given an integer N followed by a matrix V[][] consisting of pairs {X, Y} in ascending order of X, the task is to for each pair given in ascending order of X, the following operations can be performed: 

  • Convert the pair {X, Y} to {X – Y, X}
  • Convert the pair {X, Y} to {X, X+Y}
  • Change the pair as {X, X}

The task is to find the count of addition and subtraction operations required such that no two pairs overlap.

Examples:

Input: N = 5, V[] = {{1, 2} {2, 1} {5, 10} {10, 9} {19, 1}} 
Output:
Explanation: 
{1, 2}: Operation 1 modifies pair to {-1, 1}. 
{2, 1}: Operation 2 modifies pair to {2, 3}. 
{5, 10}: Operation 3 modifies pair to {5, 5} 
{10, 9}: Operation 3 modifies pair to {10, 10} 
{19, 1}: Operation 2 modifies pair to {19, 20}. 
Therefore, none of the pairs overlap. Hence, the count of addition and subtraction operations required is 3.

Input: N = 3, V[][] = {{10, 20} {15, 10} {20, 16}} 
Output:
 



Approach: 
The main idea is to observe that, the answer, in any case, will not exceed N, since any of the three operations cannot be applied twice on a pair. Follow the steps below to solve the problem:

  • Always choose Operation 1 for the first pair, since X is minimum for the first pair.
  • Always choose Operation 2 for the last pair, since X is maximum for the last pair.
  • For the remaining pairs, check if applying Operation 1 violates rules or not. If it does not violate the rules then it will always maximize the result. Otherwise check for Operation 2. Increase count if any of the two operations is applicable.
  • If both the rules are not applicable, perform operation 3.
  • Finally, print count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find maximum count of operations
int find_max(vector<pair<int, int> > v, int n)
{
    // Initialize count by 0
    int count = 0;
  
    if (n >= 2)
        count = 2;
  
    else
        count = 1;
  
    // Iterate over remaining pairs
    for (int i = 1; i < n - 1; i++) {
  
        // Check if first operation
        // is applicable
        if (v[i - 1].first
            < (v[i].first - v[i].second))
            count++;
  
        // Check if 2nd operation is applicable
        else if (v[i + 1].first
                 > (v[i].first + v[i].second)) {
            count++;
            v[i].first = v[i].first + v[i].second;
        }
  
        // Otherwise
        else
            continue;
    }
  
    // Return  the count of operations
    return count;
}
  
// Driver Code
int main()
{
    int n = 3;
    vector<pair<int, int> > v;
  
    v.push_back({ 10, 20 });
    v.push_back({ 15, 10 });
    v.push_back({ 20, 16 });
  
    cout << find_max(v, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
  
class GFG{
      
static class pair
    int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
// Function to find maximum count of operations
static int find_max(Vector<pair> v, int n)
{
    // Initialize count by 0
    int count = 0;
  
    if (n >= 2)
        count = 2;
    else
        count = 1;
  
    // Iterate over remaining pairs
    for(int i = 1; i < n - 1; i++)
    {
          
        // Check if first operation
        // is applicable
        if (v.get(i - 1).first < 
           (v.get(i).first - v.get(i).second))
            count++;
  
        // Check if 2nd operation is applicable
        else if (v.get(i + 1).first > 
                (v.get(i).first + v.get(i).second)) 
        {
            count++;
            v.get(i).first = v.get(i).first + 
                             v.get(i).second;
        }
  
        // Otherwise
        else
            continue;
    }
  
    // Return the count of operations
    return count;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    Vector<pair> v = new Vector<>();
  
    v.add(new pair(10, 20));
    v.add(new pair(15, 10));
    v.add(new pair(20, 16));
  
    System.out.print(find_max(v, n));
}
}
  
// This code is contributed by 29AjayKumar 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function to find maximum count of
# operations
def find_max(v, n):
  
    # Initialize count by 0
    count = 0
  
    if(n >= 2):
        count = 2
    else:
        count = 1
  
    # Iterate over remaining pairs
    for i in range(1, n - 1):
  
        # Check if first operation
        # is applicable
        if(v[i - 1][0] > (v[i][0] +
                          v[i][1])):
            count += 1
  
        # Check if 2nd operation is applicable
        elif(v[i + 1][0] > (v[i][0] +
                            v[i][1])):
            count += 1
            v[i][0] = v[i][0] + v[i][1]
  
        # Otherwise
        else:
            continue
  
    # Return the count of operations
    return count
  
# Driver Code
n = 3
v = []
  
v.append([ 10, 20 ])
v.append([ 15, 10 ])
v.append([ 20, 16 ])
  
print(find_max(v, n))
  
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
  
class GFG{
      
class pair
    public int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
// Function to find maximum count of operations
static int find_max(List<pair> v, int n)
{
      
    // Initialize count by 0
    int count = 0;
  
    if (n >= 2)
        count = 2;
    else
        count = 1;
  
    // Iterate over remaining pairs
    for(int i = 1; i < n - 1; i++)
    {
          
        // Check if first operation
        // is applicable
        if (v[i - 1].first < 
           (v[i].first - v[i].second))
            count++;
  
        // Check if 2nd operation is applicable
        else if (v[i + 1].first > 
                (v[i].first + v[i].second)) 
        {
            count++;
            v[i].first = v[i].first + 
                         v[i].second;
        }
  
        // Otherwise
        else
            continue;
    }
  
    // Return the count of operations
    return count;
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 3;
    List<pair> v = new List<pair>();
  
    v.Add(new pair(10, 20));
    v.Add(new pair(15, 10));
    v.Add(new pair(20, 16));
  
    Console.Write(find_max(v, n));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output: 

2

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Eat Sleep Code Repeat

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : SHIVAMSINGH67, 29AjayKumar