Given an integer **N** which represents the number of Vertices. The Task is to find the maximum number of edges possible in a Bipartite graph of **N** vertices.

**Bipartite Graph:**

- A Bipartite graph is one which is having 2 sets of vertices.
- The set are such that the vertices in the same set will never share an edge between them.

**Examples:**

Input:N = 10

Output:25

Both the sets will contain 5 vertices and every vertex of first set

will have an edge to every other vertex of the second set

i.e. total edges = 5 * 5 = 25

Input:N = 9

Output:20

**Approach:** The number of edges will be maximum when every vertex of a given set has an edge to every other vertex of the other set i.e. **edges = m * n** where **m** and **n** are the number of edges in both the sets. in order to maximize the number of edges, **m** must be equal to or as close to **n** as possible. Hence, the maximum number of edges can be calculated with the formula,

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to return the maximum number ` `// of edges possible in a Bipartite ` `// graph with N vertices ` `int` `maxEdges(` `int` `N) ` `{ ` ` ` `int` `edges = 0; ` ` ` ` ` `edges = ` `floor` `((N * N) / 4); ` ` ` ` ` `return` `edges; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `N = 5; ` ` ` `cout << maxEdges(N); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach ` ` ` `class` `GFG { ` ` ` ` ` `// Function to return the maximum number ` ` ` `// of edges possible in a Bipartite ` ` ` `// graph with N vertices ` ` ` `public` `static` `double` `maxEdges(` `double` `N) ` ` ` `{ ` ` ` `double` `edges = ` `0` `; ` ` ` ` ` `edges = Math.floor((N * N) / ` `4` `); ` ` ` ` ` `return` `edges; ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `double` `N = ` `5` `; ` ` ` `System.out.println(maxEdges(N)); ` ` ` `} ` `} ` ` ` `// This code is contributed by Naman_Garg. ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` ` ` `# Function to return the maximum number ` `# of edges possible in a Bipartite ` `# graph with N vertices ` `def` `maxEdges(N) : ` ` ` ` ` `edges ` `=` `0` `; ` ` ` ` ` `edges ` `=` `(N ` `*` `N) ` `/` `/` `4` `; ` ` ` ` ` `return` `edges; ` ` ` `# Driver code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` ` ` `N ` `=` `5` `; ` ` ` `print` `(maxEdges(N)); ` ` ` `# This code is contributed by AnkitRai01 ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of the approach ` `using` `System; ` ` ` `class` `GFG { ` ` ` ` ` `// Function to return the maximum number ` ` ` `// of edges possible in a Bipartite ` ` ` `// graph with N vertices ` ` ` `static` `double` `maxEdges(` `double` `N) ` ` ` `{ ` ` ` `double` `edges = 0; ` ` ` ` ` `edges = Math.Floor((N * N) / 4); ` ` ` ` ` `return` `edges; ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `static` `public` `void` `Main() ` ` ` `{ ` ` ` `double` `N = 5; ` ` ` `Console.WriteLine(maxEdges(N)); ` ` ` `} ` `} ` ` ` `// This code is contributed by jit_t. ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP implementation of the approach ` ` ` `// Function to return the maximum number ` `// of edges possible in a Bipartite ` `// graph with N vertices ` ` ` `function` `maxEdges(` `$N` `) ` `{ ` ` ` `$edges` `= 0; ` ` ` ` ` `$edges` `= ` `floor` `((` `$N` `* ` `$N` `) / 4); ` ` ` ` ` `return` `$edges` `; ` `} ` ` ` `// Driver code ` ` ` `$N` `= 5; ` ` ` `echo` `maxEdges(` `$N` `); ` ` ` `// This code is contributed by ajit. ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

6

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Maximum number of edges to be added to a tree so that it stays a Bipartite graph
- Maximum number of edges that N-vertex graph can have such that graph is Triangle free | Mantel's Theorem
- Maximum number of edges among all connected components of an undirected graph
- Ways to Remove Edges from a Complete Graph to make Odd Edges
- Count number of edges in an undirected graph
- Minimum number of edges between two vertices of a graph using DFS
- Number of Simple Graph with N Vertices and M Edges
- Minimum number of edges between two vertices of a Graph
- Program to find total number of edges in a Complete Graph
- Minimum number of Edges to be added to a Graph to satisfy the given condition
- Check if a given graph is Bipartite using DFS
- Check whether a given graph is Bipartite or not
- Maximum Bipartite Matching
- All vertex pairs connected with exactly k edges in a graph
- Path with minimum XOR sum of edges in a directed graph
- Shortest path with exactly k edges in a directed and weighted graph
- Shortest path with exactly k edges in a directed and weighted graph | Set 2
- Tree, Back, Edge and Cross Edges in DFS of Graph
- Largest subset of Graph vertices with edges of 2 or more colors
- Count ways to change direction of edges such that graph becomes acyclic

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.