Skip to content
Related Articles
Maximum length of the sub-array whose first and last elements are same
• Difficulty Level : Basic
• Last Updated : 30 Dec, 2019

Given a character array arr[] containing only lowercase English alphabets, the task is to print the maximum length of the subarray such that the first and the last element of the sub-array are same.

Examples:

Input: arr[] = {‘g’, ‘e’, ‘e’, ‘k’, ‘s’}
Output: 2
{‘e’, ‘e’} is the maximum length sub-array satisfying the given condition.

Input: arr[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘a’}
Output: 5
{‘a’, ‘b’, ‘c’, ‘d’, ‘a’} is the required sub-array

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: For every element of the array ch, store it’s first and last occurrence. Then the maximum length of the sub-array that starts and ends with the same element ch will be lastOccurrence(ch) – firstOccurrence(ch) + 1. The maximum of this value among all the elements is the required answer.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;`` ` `// Class that represents a single element``// of the given array and stores it's first``// and the last occurrence in the array``class` `Element``{``public``:``    ``int` `firstOcc, lastOcc;``    ``Element();``    ``void` `updateOccurence(``int``);``};`` ` `Element::Element()``{``    ``firstOcc = lastOcc = -1;``}`` ` `// Function to update the occurrence``// of a particular character in the array``void` `Element::updateOccurence(``int` `index)``{``    ``// If first occurrence is set to something``    ``// other than -1 then it doesn't need updating``    ``if` `(firstOcc == -1)``        ``firstOcc = index;`` ` `    ``// Last occurrence will be updated everytime``    ``// the character appears in the array``    ``lastOcc = index;``}`` ` `// Function to return the maximum length of the``// sub-array that starts and ends with the same element``int` `maxLenSubArr(string arr, ``int` `n)``{``    ``Element elements;`` ` `    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``int` `ch = arr[i] - ``'a'``;`` ` `        ``// Update current character's occurrence``        ``elements[ch].updateOccurence(i);``    ``}`` ` `    ``int` `maxLen = 0;``    ``for` `(``int` `i = 0; i < 26; i++)``    ``{``        ``// Length of the longest sub-array that starts``        ``// and ends with the same element``        ``int` `len = elements[i].lastOcc - ``                  ``elements[i].firstOcc + 1;``        ``maxLen = max(maxLen, len);``    ``}`` ` `    ``// Return the maximum length of``    ``// the required sub-array``    ``return` `maxLen;``}`` ` `// Driver Code``int` `main()``{``    ``string arr = ``"geeks"``;``    ``int` `n = arr.length();`` ` `    ``cout << maxLenSubArr(arr, n) << endl;`` ` `    ``return` `0;``}`` ` `// This code is contributed by``// sanjeev2552`

## Java

 `// Java implementation of the approach`` ` `// Class that represents a single element``// of the given array and stores it's first``// and the last occurrence in the array``class` `Element {``    ``int` `firstOcc, lastOcc;`` ` `    ``public` `Element()``    ``{``        ``firstOcc = lastOcc = -``1``;``    ``}`` ` `    ``// Function to update the occurrence``    ``// of a particular character in the array``    ``public` `void` `updateOccurrence(``int` `index)``    ``{`` ` `        ``// If first occurrence is set to something``        ``// other than -1 then it doesn't need updating``        ``if` `(firstOcc == -``1``)``            ``firstOcc = index;`` ` `        ``// Last occurrence will be updated everytime``        ``// the character appears in the array``        ``lastOcc = index;``    ``}``}`` ` `class` `GFG {`` ` `    ``// Function to return the maximum length of the``    ``// sub-array that starts and ends with the same element``    ``public` `static` `int` `maxLenSubArr(``char` `arr[], ``int` `n)``    ``{`` ` `        ``Element elements[] = ``new` `Element[``26``];``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``int` `ch = arr[i] - ``'a'``;`` ` `            ``// Initialize the current character``            ``// if haven't already``            ``if` `(elements[ch] == ``null``)``                ``elements[ch] = ``new` `Element();`` ` `            ``// Update current character's occurrence``            ``elements[ch].updateOccurrence(i);``        ``}`` ` `        ``int` `maxLen = ``0``;``        ``for` `(``int` `i = ``0``; i < ``26``; i++) {`` ` `            ``// If current character appears in the given array``            ``if` `(elements[i] != ``null``) {`` ` `                ``// Length of the longest sub-array that starts``                ``// and ends with the same element``                ``int` `len = elements[i].lastOcc - elements[i].firstOcc + ``1``;``                ``maxLen = Math.max(maxLen, len);``            ``}``        ``}`` ` `        ``// Return the maximum length of``        ``// the required sub-array``        ``return` `maxLen;``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``char` `arr[] = { ``'g'``, ``'e'``, ``'e'``, ``'k'``, ``'s'` `};``        ``int` `n = arr.length;`` ` `        ``System.out.print(maxLenSubArr(arr, n));``    ``}``}`

## Python3

 `# Python3 implementation of the approach `` ` `# Class that represents a single element ``# of the given array and stores it's first ``# and the last occurrence in the array ``class` `Element: ``     ` `    ``def` `__init__(``self``):``        ``self``.firstOcc ``=` `-``1``        ``self``.lastOcc ``=` `-``1`` ` `    ``# Function to update the occurrence ``    ``# of a particular character in the array ``    ``def` `updateOccurrence(``self``, index): `` ` `        ``# If first occurrence is set to ``        ``# something other than -1 then it``        ``# doesn't need updating ``        ``if` `self``.firstOcc ``=``=` `-``1``: ``            ``self``.firstOcc ``=` `index `` ` `        ``# Last occurrence will be updated ``        ``# everytime the character appears``        ``# in the array ``        ``self``.lastOcc ``=` `index `` ` `# Function to return the maximum length ``# of the sub-array that starts and ends``# with the same element ``def` `maxLenSubArr(arr, n): `` ` `    ``elements ``=` `[``None``] ``*` `26``    ``for` `i ``in` `range``(``0``, n): ``        ``ch ``=` `ord``(arr[i]) ``-` `ord``(``'a'``) `` ` `        ``# Initialize the current character ``        ``# if haven't already ``        ``if` `elements[ch] ``=``=` `None``: ``            ``elements[ch] ``=` `Element() `` ` `        ``# Update current character's occurrence ``        ``elements[ch].updateOccurrence(i) ``         ` `    ``maxLen ``=` `0``    ``for` `i ``in` `range``(``0``, ``26``): `` ` `        ``# If current character appears in``        ``# the given array ``        ``if` `elements[i] !``=` `None``: `` ` `            ``# Length of the longest sub-array that ``            ``# starts and ends with the same element ``            ``length ``=` `(elements[i].lastOcc ``-` `                      ``elements[i].firstOcc ``+` `1``)``            ``maxLen ``=` `max``(maxLen, length) ``             ` `    ``# Return the maximum length of ``    ``# the required sub-array ``    ``return` `maxLen ``     ` `# Driver code ``if` `__name__ ``=``=` `"__main__"``:``     ` `    ``arr ``=` `[``'g'``, ``'e'``, ``'e'``, ``'k'``, ``'s'``] ``    ``n ``=` `len``(arr) `` ` `    ``print``(maxLenSubArr(arr, n)) ``     ` `# This code is contributed by Rituraj Jain`

## C#

 `// C# implementation of the above approach ``using` `System;`` ` `// Class that represents a single element ``// of the given array and stores it's first ``// and the last occurrence in the array ``public` `class` `Element ``{ ``     ` `    ``public` `int` `firstOcc, lastOcc; `` ` `    ``public` `Element() ``    ``{ ``        ``firstOcc = lastOcc = -1; ``    ``} `` ` `    ``// Function to update the occurrence ``    ``// of a particular character in the array ``    ``public` `void` `updateOccurrence(``int` `index) ``    ``{ `` ` `        ``// If first occurrence is set to something ``        ``// other than -1 then it doesn't need updating ``        ``if` `(firstOcc == -1) ``            ``firstOcc = index; `` ` `        ``// Last occurrence will be updated everytime ``        ``// the character appears in the array ``        ``lastOcc = index; ``    ``} ``} `` ` `class` `GFG ``{ `` ` `    ``// Function to return the maximum ``    ``// length of the sub-array that``    ``//  starts and ends with the same element ``    ``public` `static` `int` `maxLenSubArr(``char` `[]arr, ``int` `n) ``    ``{ `` ` `        ``Element []elements = ``new` `Element; ``        ``for` `(``int` `i = 0; i < n; i++) ``        ``{ ``            ``int` `ch = arr[i] - ``'a'``; `` ` `            ``// Initialize the current character ``            ``// if haven't already ``            ``if` `(elements[ch] == ``null``) ``                ``elements[ch] = ``new` `Element(); `` ` `            ``// Update current character's occurrence ``            ``elements[ch].updateOccurrence(i); ``        ``} `` ` `        ``int` `maxLen = 0; ``        ``for` `(``int` `i = 0; i < 26; i++) ``        ``{ `` ` `            ``// If current character appears ``            ``// in the given array ``            ``if` `(elements[i] != ``null``)``            ``{ `` ` `                ``// Length of the longest sub-array that starts ``                ``// and ends with the same element ``                ``int` `len = elements[i].lastOcc - elements[i].firstOcc + 1; ``                ``maxLen = Math.Max(maxLen, len); ``            ``} ``        ``} `` ` `        ``// Return the maximum length of ``        ``// the required sub-array ``        ``return` `maxLen; ``    ``} `` ` `    ``// Driver code ``    ``public` `static` `void` `Main() ``    ``{ ``        ``char` `[]arr = { ``'g'``, ``'e'``, ``'e'``, ``'k'``, ``'s'` `}; ``        ``int` `n = arr.Length; `` ` `        ``Console.WriteLine(maxLenSubArr(arr, n)); ``    ``} ``} `` ` `// This code is contributed by Ryuga`
Output:
```2
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up