Maximum Length Bitonic Subarray | Set 2 (O(n) time and O(1) Space)
Given an array A[0 … n-1] containing n positive integers, a subarray A[i … j] is bitonic if there is a k with i <= k <= j such that A[i] = .. A[j – 1] > = A[j]. Write a function that takes an array as argument and returns the length of the maximum length bitonic subarray.
We have discussed O(n) time and O(n) space approach in below post.
Maximum Length Bitonic Subarray | Set 1 (O(n) time and O(n) space)
In this set, we will discuss solution taking constant extra space.
The idea is to check longest bitonic subarray starting at A[i]. From A[i], first we will check for end of ascent and then end of descent.Overlapping of bitonic subarrays is taken into account by recording a nextStart position when it finds two equal values when going down the slope of the current subarray. If length of this subarray is greater than max_len, we will update max_len. We continue this process till end of array is reached.
Implementation:
C++
// C++ program to find length of longest bitonic // subarray. O(n) time and O(1) extra space #include <iostream> using namespace std; // Function to find length of longest bitonic // subarray int bitonic( int *A, int n) { // if A is empty if (n == 0) return 0; // initializing max_len int maxLen=1; int start=0; int nextStart=0; int j =0; while (j < n-1) { // look for end of ascent while (j<n-1 && A[j]<=A[j+1]) j++; // look for end of descent while (j<n-1 && A[j]>=A[j+1]){ // adjusting nextStart; // this will be necessarily executed at least once, // when we detect the start of the descent if (j<n-1 && A[j]>A[j+1]) nextStart=j+1; j++; } // updating maxLen, if required maxLen = max(maxLen,j-(start-1)); start=nextStart; } return maxLen; } int main() { int A[] = {12, 4, 78, 90, 45, 23}; int n = sizeof (A)/ sizeof (A[0]); printf ( "Length of max length Bitonic " "Subarray is %d" , bitonic(A, n)); return 0; } |
Java
// Java program to find length of longest bitonic // subarray O(n) time and O(1) extra space public class MaxLengthBitonic { // Method to find length of longest bitonic // subarray static int maxLenBitonic( int [] A, int n) { // if A is empty if (n == 0 ) return 0 ; // initializing max_len int maxLen= 1 ; int start= 0 ; int nextStart= 0 ; int j = 0 ; while (j < n- 1 ) { // look for end of ascent while (j<n- 1 && A[j]<=A[j+ 1 ]) j++; // look for end of descent while (j<n- 1 && A[j]>=A[j+ 1 ]){ // adjusting nextStart; // this will be necessarily executed at least once, // when we detect the start of the descent if (j<n- 1 && A[j]>A[j+ 1 ]) nextStart=j+ 1 ; j++; } // updating maxLen, if required maxLen = Math.max(maxLen,j-(start- 1 )); start=nextStart; } return maxLen; } public static void main(String[] args) { int A[] = { 12 , 4 , 78 , 90 , 45 , 23 }; System.out.println( "Length of maximal length bitonic " + "subarray is " + maxLenBitonic(A,A.length)); } } // This code is contributed by Markus Schott |
Python3
# Python3 program to find length of longest bitonic # subarray. O(n) time and O(1) extra space # Function to find length of longest # bitonic subarray def bitonic(A, n): # if A is empty if (n = = 0 ): return 0 ; # initializing max_len maxLen = 1 ; start = 0 ; nextStart = 0 ; j = 0 ; while (j < n - 1 ): # look for end of ascent while (j < n - 1 and A[j] < = A[j + 1 ]): j = j + 1 ; # look for end of descent while (j < n - 1 and A[j] > = A[j + 1 ]): # adjusting nextStart; # this will be necessarily executed # at least once, when we detect the # start of the descent if (j < n - 1 and A[j] > A[j + 1 ]): nextStart = j + 1 ; j = j + 1 ; # updating maxLen, if required maxLen = max (maxLen, j - (start - 1 )); start = nextStart; return maxLen; # Driver Code A = [ 12 , 4 , 78 , 90 , 45 , 23 ]; n = len (A); print ( "Length of max length Bitonic Subarray is" , bitonic(A, n)); # This code is contributed by Shivi_Aggarwal |
C#
// C# program to find length of longest bitonic // subarray O(n) time and O(1) extra space using System; class MaxLengthBitonic { // Method to find length of // longest bitonic subarray static int maxLenBitonic( int [] A, int n) { // if A is empty if (n == 0) return 0; // initializing max_len int maxLen = 1; int start = 0; int nextStart = 0; int j = 0; while (j < n-1) { // look for end of ascent while (j < n-1 && A[j] <= A[j+1]) j++; // look for end of descent while (j < n-1 && A[j] >= A[j+1]){ // adjusting nextStart; // this will be necessarily executed at least once, // when we detect the start of the descent if (j < n-1 && A[j] > A[j+1]) nextStart=j + 1; j++; } // updating maxLen, if required maxLen = Math.Max(maxLen, j - (start - 1)); start=nextStart; } return maxLen; } public static void Main() { int []A = {12, 4, 78, 90, 45, 23}; Console.Write( "Length of maximal length bitonic " + "subarray is " + maxLenBitonic(A, A.Length)); } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to find length of // longest bitonic subarray. // O(n) time and O(1) extra space // Function to find length of // longest bitonic subarray function bitonic( $A , $n ) { // if A is empty if ( $n == 0) return 0; // initializing max_len $maxLen = 1; $start = 0; $nextStart = 0; $j = 0; while ( $j < $n - 1) { // look for end of ascent while ( $j < $n - 1 && $A [ $j ] <= $A [ $j + 1]) $j ++; // look for end of descent while ( $j < $n - 1 && $A [ $j ] >= $A [ $j + 1]) { // adjusting nextStart; // this will be necessarily // executed at least once, // when we detect the start // of the descent if ( $j < $n - 1 && $A [ $j ] > $A [ $j + 1]) $nextStart = $j + 1; $j ++; } // updating maxLen, // if required $maxLen = max( $maxLen , $j - ( $start - 1)); $start = $nextStart ; } return $maxLen ; } // Driver Code $A = array (12, 4, 78, 90, 45, 23); $n = sizeof( $A ); echo "Length of max length Bitonic " , "Subarray is " , bitonic( $A , $n ); // This code is contributed by nitin mittal. ?> |
Javascript
<script> // JavaScript program to find length of // longest bitonic subarray. // O(n) time and O(1) extra space // Function to find length of // longest bitonic subarray function bitonic(A, n) { // if A is empty if (n == 0) return 0; // initializing max_len let maxLen = 1; let start = 0; let nextStart = 0; let j = 0; while (j < n - 1) { // look for end of ascent while (j < n - 1 && A[j] <= A[j + 1]) j++; // look for end of descent while (j < n - 1 && A[j] >= A[j + 1]) { // adjusting nextStart; // this will be necessarily // executed at least once, // when we detect the start // of the descent if (j < n - 1 && A[j] > A[j + 1]) nextStart = j + 1; j++; } // updating maxLen, // if required maxLen = Math.max(maxLen, j - (start - 1)); start = nextStart; } return maxLen; } // Driver Code let A = new Array(12, 4, 78, 90, 45, 23); let n = A.length; document.write( "Length of max length Bitonic " + "Subarray is " + bitonic(A, n)); // This code is contributed by gfgking </script> |
Length of max length Bitonic Subarray is 5
This article is contributed by Gaurav Miglani. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...