# Maximize the sum of products of the degrees between any two vertices of the tree

Given an integer N, the task is to construct a tree such that sum of for all ordered pairs (u, v) is maximum where u != v. Print the maximum possible sum.

Examples:

```Input: N = 4
Output: 26
1
/
2
/
3
/
4
For node 1, 1*2 + 1*2 + 1*1 = 5
For node 2, 2*1 + 2*2 + 2*1 = 8
For node 3, 2*1 + 2*2 + 2*1 = 8
For node 4, 1*1 + 1*2 + 1*2 = 5
Total sum = 5 + 8 + 8 + 5 = 26

Input: N = 6
Output: 82
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: We know that sum of the degree of all nodes in a tree is (2 * N) – 2 where N is the number of nodes in the tree. As we have to maximize the sum so we have to minimize the number of leaf nodes as the leaf nodes have the minimum degree among all the nodes of the tree and the tree will be of the form:

```      1
/
2
/
...
/
N
```

where only the root and the only leaf node will have a degree of 1 and all the other nodes will have degree 2.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of above approach ` `#include ` `using` `namespace` `std; ` `#define ll long long int ` ` `  `// Function to return the maximum possible sum ` `ll maxSum(``int` `N) ` `{ ` `    ``ll ans = 0; ` ` `  `    ``for` `(``int` `u = 1; u <= N; u++) { ` `        ``for` `(``int` `v = 1; v <= N; v++) { ` `            ``if` `(u == v) ` `                ``continue``; ` ` `  `            ``// Initialize degree for node u to 2 ` `            ``int` `degreeU = 2; ` ` `  `            ``// If u is the leaf node or the root node ` `            ``if` `(u == 1 || u == N) ` `                ``degreeU = 1; ` ` `  `            ``// Initialize degree for node v to 2 ` `            ``int` `degreeV = 2; ` ` `  `            ``// If v is the leaf node or the root node ` `            ``if` `(v == 1 || v == N) ` `                ``degreeV = 1; ` ` `  `            ``// Update the sum ` `            ``ans += (degreeU * degreeV); ` `        ``} ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 6; ` `    ``cout << maxSum(N); ` `} `

## Java

 `// Java implementation of above approach ` `class` `GFG ` `{ ` `     `  `// Function to return the maximum possible sum ` `static` `int` `maxSum(``int` `N) ` `{ ` `    ``int` `ans = ``0``; ` ` `  `    ``for` `(``int` `u = ``1``; u <= N; u++)  ` `    ``{ ` `        ``for` `(``int` `v = ``1``; v <= N; v++) ` `        ``{ ` `            ``if` `(u == v) ` `                ``continue``; ` ` `  `            ``// Initialize degree for node u to 2 ` `            ``int` `degreeU = ``2``; ` ` `  `            ``// If u is the leaf node or the root node ` `            ``if` `(u == ``1` `|| u == N) ` `                ``degreeU = ``1``; ` ` `  `            ``// Initialize degree for node v to 2 ` `            ``int` `degreeV = ``2``; ` ` `  `            ``// If v is the leaf node or the root node ` `            ``if` `(v == ``1` `|| v == N) ` `                ``degreeV = ``1``; ` ` `  `            ``// Update the sum ` `            ``ans += (degreeU * degreeV); ` `        ``} ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `N = ``6``; ` `    ``System.out.println(maxSum(N)); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

## Python3

 `# Python3 implementation of above approach  ` ` `  `# Function to return the maximum possible sum  ` `def` `maxSum(N) :  ` `    ``ans ``=` `0``;  ` ` `  `    ``for` `u ``in` `range``(``1``, N ``+` `1``) : ` `        ``for` `v ``in` `range``(``1``, N ``+` `1``) :  ` `            ``if` `(u ``=``=` `v) : ` `                ``continue``;  ` ` `  `            ``# Initialize degree for node u to 2  ` `            ``degreeU ``=` `2``;  ` ` `  `            ``# If u is the leaf node or the root node  ` `            ``if` `(u ``=``=` `1` `or` `u ``=``=` `N) : ` `                ``degreeU ``=` `1``;  ` ` `  `            ``# Initialize degree for node v to 2  ` `            ``degreeV ``=` `2``;  ` ` `  `            ``# If v is the leaf node or the root node  ` `            ``if` `(v ``=``=` `1` `or` `v ``=``=` `N) : ` `                ``degreeV ``=` `1``;  ` ` `  `            ``# Update the sum  ` `            ``ans ``+``=` `(degreeU ``*` `degreeV);  ` `             `  `    ``return` `ans;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `: ` `     `  `    ``N ``=` `6``;  ` `    ``print``(maxSum(N));  ` ` `  `# This code is contributed by Ryuga `

## C#

 `// C# implementation of above approach ` `using` `System; ` `class` `GFG ` `{ ` `     `  `// Function to return the maximum possible sum ` `static` `int` `maxSum(``int` `N) ` `{ ` `    ``int` `ans = 0; ` ` `  `    ``for` `(``int` `u = 1; u <= N; u++)  ` `    ``{ ` `        ``for` `(``int` `v = 1; v <= N; v++) ` `        ``{ ` `            ``if` `(u == v) ` `                ``continue``; ` ` `  `            ``// Initialize degree for node u to 2 ` `            ``int` `degreeU = 2; ` ` `  `            ``// If u is the leaf node or the root node ` `            ``if` `(u == 1 || u == N) ` `                ``degreeU = 1; ` ` `  `            ``// Initialize degree for node v to 2 ` `            ``int` `degreeV = 2; ` ` `  `            ``// If v is the leaf node or the root node ` `            ``if` `(v == 1 || v == N) ` `                ``degreeV = 1; ` ` `  `            ``// Update the sum ` `            ``ans += (degreeU * degreeV); ` `        ``} ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `static` `void` `Main() ` `{ ` `    ``int` `N = 6; ` `    ``Console.WriteLine(maxSum(N)); ` `} ` `} ` ` `  `// This code is contributed by Chandan_jnu `

## PHP

 ` `

Output:

```82
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.