Given two arrays **X[]** and **Y[]**, representing points on **X** and **Y** number lines, such that every similar-indexed array element forms a line segment, i.e. **X[i]** and **Y[i]** forms a line segment, the task is to find the maximum number of line segments that can be selected from the given array.

**Examples:**

Input:X[] = {0, 3, 4, 1, 2}, Y[] = {3, 2, 0, 1, 4}Output:3Explanation:The set of line segments are {{1, 1}, {4, 0}, {0, 3}}.

Input:X[] = {1, 2, 0}, Y[] = {2, 0, 1}Output:2Explanation:The set of line segments is {{1, 2}, {2, 0}}.

**Approach: **The problem can be solved using the observation that the intersection between two line-segments (i, j) occurs only when **X[i] < X[j]** and **Y[i] > Y[j]** or **vice-versa**. Therefore, the problem can be solved using Sorting along with Binary search, using Sets can be used to find such line segments.

Follow the steps below to solve the given problem:

- Initialize a vector of pairs, say
**p**to store pairs**{X[i], Y[i]}**as an element. - Sort the vector of pairs
**p**in ascending order of points on X number line, so every line segment**i**satisfies the first condition for the intersection i.e**X[k] < X[i]**where**k < i**. - Initialize a Set, say
**s**, to store the values of**Y[i]**in descending order. - From the first element from
**p**, push the Y-coordinate (i.e**p[0].second**) into the set. - Iterate over all the elements of
**p**, and for each element:- Perform a binary search to find the lower_bound of
**p[i].second**. - If there is no lower bound obtained, that means that
**p[i].second**is smaller than all the elements present in the Set. This satisfies the second condition that**Y[i] < Y[k]**where**k < i**, so push**p[i].second**into the**Set**. - If a lower bound is found, then remove it and push
**p[i].second**into the Set.

- Perform a binary search to find the lower_bound of
- Finally, return the size of the set that as the result.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the maximum number of` `// intersecting line segments possible` `int` `solve(` `int` `N, ` `int` `X[], ` `int` `Y[])` `{` ` ` `// Stores pairs of line` ` ` `// segments {X[i], Y[i])` ` ` `vector<pair<` `int` `, ` `int` `> > p;` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `// Push {X[i], Y[i]} into p` ` ` `p.push_back({ X[i], Y[i] });` ` ` `}` ` ` `// Sort p in ascending order` ` ` `// of points on X number line` ` ` `sort(p.begin(), p.end());` ` ` `// Stores the points on Y number` ` ` `// line in descending order` ` ` `set<` `int` `, greater<` `int` `> > s;` ` ` `// Insert the first Y point from p` ` ` `s.insert(p[0].second);` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `// Binary search to find the` ` ` `// lower bound of p[i].second` ` ` `auto` `it = s.lower_bound(p[i].second);` ` ` `// If lower_bound doesn't exist` ` ` `if` `(it == s.end()) {` ` ` `// Insert p[i].second into the set` ` ` `s.insert(p[i].second);` ` ` `}` ` ` `else` `{` ` ` `// Erase the next lower` ` ` `//_bound from the set` ` ` `s.erase(*it);` ` ` `// Insert p[i].second` ` ` `// into the set` ` ` `s.insert(p[i].second);` ` ` `}` ` ` `}` ` ` `// Return the size of the set` ` ` `// as the final result` ` ` `return` `s.size();` `}` `// Driver Code` `int` `main()` `{` ` ` `// Given Input` ` ` `int` `N = 3;` ` ` `int` `X[] = { 1, 2, 0 };` ` ` `int` `Y[] = { 2, 0, 1 };` ` ` `// Function call to find the maximum` ` ` `// number of intersecting line segments` ` ` `int` `maxintersection = solve(N, X, Y);` ` ` `cout << maxintersection;` `}` |

## Java

`// Java program for the above approach` `import` `java.io.*;` `import` `java.lang.*;` `import` `java.util.*;` `class` `GFG{` `// Function to find the maximum number of` `// intersecting line segments possible` `static` `int` `solve(` `int` `N, ` `int` `X[], ` `int` `Y[])` `{` ` ` ` ` `// Stores pairs of line` ` ` `// segments {X[i], Y[i])` ` ` `ArrayList<` `int` `[]> p = ` `new` `ArrayList<>();` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++)` ` ` `{` ` ` ` ` `// Add {X[i], Y[i]} into p` ` ` `p.add(` `new` `int` `[] { X[i], Y[i] });` ` ` `}` ` ` `// Sort p in ascending order` ` ` `// of points on X number line` ` ` `Collections.sort(p, (p1, p2) -> {` ` ` `if` `(p1[` `0` `] != p2[` `0` `])` ` ` `return` `p1[` `0` `] - p2[` `0` `];` ` ` ` ` `return` `p1[` `1` `] - p2[` `1` `];` ` ` `});` ` ` `// Stores the points on Y number` ` ` `// line in ascending order` ` ` `TreeSet<Integer> s = ` `new` `TreeSet<>();` ` ` `// Insert the first Y point from p` ` ` `s.add(p.get(` `0` `)[` `1` `]);` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++)` ` ` `{` ` ` ` ` `// Binary search to find the` ` ` `// floor value of p.get(i)[1]` ` ` `Integer it = s.floor(p.get(i)[` `1` `]);` ` ` `// If floor value doesn't exist` ` ` `if` `(it == ` `null` `)` ` ` `{` ` ` `// Insert p.get(i)[1] into the set` ` ` `s.add(p.get(i)[` `1` `]);` ` ` `}` ` ` `else` ` ` `{` ` ` ` ` `// Erase the next floor` ` ` `// value from the set` ` ` `s.remove(it);` ` ` `// Insert p.get(i)[1]` ` ` `// into the set` ` ` `s.add(p.get(i)[` `1` `]);` ` ` `}` ` ` `}` ` ` `// Return the size of the set` ` ` `// as the final result` ` ` `return` `s.size();` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` ` ` `// Given Input` ` ` `int` `N = ` `3` `;` ` ` `int` `X[] = { ` `1` `, ` `2` `, ` `0` `};` ` ` `int` `Y[] = { ` `2` `, ` `0` `, ` `1` `};` ` ` `// Function call to find the maximum` ` ` `// number of intersecting line segments` ` ` `int` `maxintersection = solve(N, X, Y);` ` ` `System.out.println(maxintersection);` `}` `}` `// This code is contributed by Kingash` |

## Python3

`# Python3 program for the above approach` `from` `bisect ` `import` `bisect_left` `# Function to find the maximum number of` `# intersecting line segments possible` `def` `solve(N, X, Y):` ` ` ` ` `# Stores pairs of line` ` ` `# segments {X[i], Y[i])` ` ` `p ` `=` `[]` ` ` `for` `i ` `in` `range` `(N):` ` ` ` ` `# Push {X[i], Y[i]} into p` ` ` `p.append([X[i], Y[i]])` ` ` `# Sort p in ascending order` ` ` `# of points on X number line` ` ` `p ` `=` `sorted` `(p)` ` ` `# Stores the points on Y number` ` ` `# line in descending order` ` ` `s ` `=` `{}` ` ` `# Insert the first Y pofrom p` ` ` `s[p[` `0` `][` `1` `]] ` `=` `1` ` ` `for` `i ` `in` `range` `(N):` ` ` ` ` `# Binary search to find the` ` ` `# lower bound of p[i][1]` ` ` `arr ` `=` `list` `(s.keys())` ` ` `it ` `=` `bisect_left(arr, p[i][` `1` `])` ` ` `# If lower_bound doesn't exist` ` ` `if` `(it ` `=` `=` `len` `(s)):` ` ` ` ` `# Insert p[i][1] into the set` ` ` `s[p[i][` `1` `]] ` `=` `1` ` ` `else` `:` ` ` `# Erase the next lower` ` ` `# _bound from the set` ` ` `del` `s[arr[it]]` ` ` `# Insert p[i][1]` ` ` `# into the set` ` ` `s[p[i][` `1` `]] ` `=` `1` ` ` `# Return the size of the set` ` ` `# as the final result` ` ` `return` `len` `(s)` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` ` ` `# Given Input` ` ` `N ` `=` `3` ` ` `X ` `=` `[` `1` `, ` `2` `, ` `0` `]` ` ` `Y ` `=` `[` `2` `, ` `0` `, ` `1` `]` ` ` `# Function call to find the maximum` ` ` `# number of intersecting line segments` ` ` `maxintersection ` `=` `solve(N, X, Y)` ` ` ` ` `print` `(maxintersection)` `# This code is contributed by mohit kumar 29` |

**Output:**

2

**Time complexity:** O(N log N)**Auxiliary Space:** O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.