Skip to content
Related Articles

Related Articles

Maximize count of groups from given 0s, 1s and 2s with sum divisible by 3

Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 26 Aug, 2021
Improve Article
Save Article

Given three integers, C0, C1 and C2 frequencies of 0s, 1s and 2s in a group S. The task is to find the maximum number of groups having the sum divisible by 3, the condition is the sum(S) is divisible by 3 and the union of all groups must be equal to S

Examples:

Input: C0 = 2, C1 = 4, C2 = 1
Output: 4
Explanation: it can divide the group S = {0, 0, 1, 1, 1, 1, 2} into four groups {0}, {0}, {1, 1, 1}, {1, 2}. It can be proven that 4 is the maximum possible answer.

Input: C0 = 250, C1 = 0, C2 = 0
Output: 250

 

Approach: This problem can be solved using the Greedy Algorithm. follow the steps given below to solve the problem.

  • Initialize a variable maxAns, say 0, to store the maximum number of groups.
  • Add C0 to maxAns, because every {0} can be a group such that the sum is divisible by 3.
  • Initialize a variable k, say min(C1, C2), and add it to maxAns, because at least k, {1, 2} group can be created.
  • Add abs(C1-C2) /3 to maxAns, it will contribution of the remaining 1s or 2s.
  • Return maxAns.

Below is the implementation of the above approach.

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
int maxGroup(int c0, int c1, int c2)
{
 
    // Initializing to store maximum number of groups
    int maxAns = 0;
 
    // Adding C0
    maxAns += c0;
 
    // Taking Minimum of c1, c2 as minimum number of
    // pairs must be minimum of c1, c2
    int k = min(c1, c2);
    maxAns += k;
 
    // If there is any remaining element in c1 or c2
    // then it must be the absolute difference of c1 and
    // c2 and dividing it by 3 to make it one pair
    maxAns += abs(c1 - c2) / 3;
 
    return maxAns;
}
 
int main()
{
    int C0 = 2, C1 = 4, C2 = 1;
    cout << maxGroup(C0, C1, C2);
    return 0;
}
 
// This code is contributed by maddler

Java




// Java program for above approach
 
import java.io.*;
 
class GFG {
 
    // Function to calculate maximum number of groups
    public static int maxGroup(int c0, int c1, int c2)
    {
 
        // Initializing to store maximum number of groups
        int maxAns = 0;
 
        // Adding C0
        maxAns += c0;
 
        // Taking Minimum of c1, c2 as minimum number of
        // pairs must be minimum of c1, c2
        int k = Math.min(c1, c2);
        maxAns += k;
 
        // If there is any remaining element in c1 or c2
        // then it must be the absolute difference of c1 and
        // c2 and dividing it by 3 to make it one pair
        maxAns += Math.abs(c1 - c2) / 3;
 
        return maxAns;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given Input
        int C0 = 2, C1 = 4, C2 = 1;
 
        // Function Call
        System.out.println(maxGroup(C0, C1, C2));
    }
}

Python3




# python 3 program for above approach
def maxGroup(c0, c1, c2):
   
    # Initializing to store maximum number of groups
    maxAns = 0
 
    # Adding C0
    maxAns += c0
 
    # Taking Minimum of c1, c2 as minimum number of
    # pairs must be minimum of c1, c2
    k = min(c1, c2)
    maxAns += k
 
    # If there is any remaining element in c1 or c2
    # then it must be the absolute difference of c1 and
    # c2 and dividing it by 3 to make it one pair
    maxAns += abs(c1 - c2) // 3
 
    return maxAns
 
  # Driver code
if __name__ == '__main__':
    C0 = 2
    C1 = 4
    C2 = 1
    print(maxGroup(C0, C1, C2))
 
    # This code is contributed by ipg2016107.

C#




// C# program for above approach
using System;
 
class GFG{
     
// Function to calculate maximum number of groups   
public static int maxGroup(int c0, int c1, int c2)
{
     
    // Initializing to store maximum number
    // of groups
    int maxAns = 0;
 
    // Adding C0
    maxAns += c0;
 
    // Taking Minimum of c1, c2 as minimum number
    // of pairs must be minimum of c1, c2
    int k = Math.Min(c1, c2);
    maxAns += k;
 
    // If there is any remaining element
    // in c1 or c2 then it must be the
    // absolute difference of c1 and c2
    // and dividing it by 3 to make it one pair
    maxAns += Math.Abs(c1 - c2) / 3;
 
    return maxAns;
}
 
// Driver Code
static public void Main()
{
   
    // Given Input
    int C0 = 2, C1 = 4, C2 = 1;
   
    // Function Call
    Console.WriteLine(maxGroup(C0, C1, C2));
}
}
 
// This code is contributed by maddler

Javascript




<script>
 
       // JavaScript program for the above approach;
       function maxGroup(c0, c1, c2)
       {
 
           // Initializing to store maximum number of groups
           let maxAns = 0;
 
           // Adding C0
           maxAns += c0;
 
           // Taking Minimum of c1, c2 as minimum number of
           // pairs must be minimum of c1, c2
           let k = Math.min(c1, c2);
           maxAns += k;
 
           // If there is any remaining element in c1 or c2
           // then it must be the absolute difference of c1 and
           // c2 and dividing it by 3 to make it one pair
           maxAns += Math.abs(c1 - c2) / 3;
 
           return maxAns;
       }
 
       let C0 = 2, C1 = 4, C2 = 1;
       document.write(maxGroup(C0, C1, C2));
        
  // This code is contributed by Potta Lokesh
   </script>

Output: 

4

 

Time Complexity: O(1)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!