Related Articles

# Maximize array elements upto given number

• Difficulty Level : Hard
• Last Updated : 04 May, 2021

Given an array of integers, a number and a maximum value, task is to compute the maximum value that can be obtained from the array elements. Every value on the array traversing from the beginning can be either added to or subtracted from the result obtained from previous index such that at any point the result is not less than 0 and not greater than the given maximum value. For index 0 take previous result equal to given number. In case of no possible answer print -1.

Examples :

```Input : arr[] = {2, 1, 7}
Number = 3
Maximum value = 7
Output : 7
The order of addition and subtraction
is: 3(given number) - 2(arr[0]) -
1(arr[1]) + 7(arr[2]).

Input : arr[] = {3, 10, 6, 4, 5}
Number = 1
Maximum value = 15
Output : 9
The order of addition and subtraction
is: 1 + 3 + 10 - 6 - 4 + 5```

Prerequisite : Dynamic Programming | Recursion.
Naive Approach : Use recursion to find maximum value. At every index position there are two choices, either add current array element to value obtained so far from previous elements or subtract current array element from value obtained so far from previous elements. Start from index 0, add or subtract arr[0] from given number and recursively call for next index along with updated number. When entire array is traversed, compare the updated number with overall maximum value of number obtained so far.

Below is the implementation of above approach :

## C++

 `// CPP code to find maximum``// value of number obtained by``// using array elements recursively.``#include ``using` `namespace` `std;` `// Utility function to find maximum possible value``void` `findMaxValUtil(``int` `arr[], ``int` `n, ``int` `num,``                    ``int` `maxLimit, ``int` `ind, ``int``& ans)``{``    ``// If entire array is traversed, then compare``    ``// current value in num to overall maximum``    ``// obtained so far.``    ``if` `(ind == n) {``        ``ans = max(ans, num);``        ``return``;``    ``}` `    ``// Case 1: Subtract current element from value so``    ``// far if result is greater than or equal to zero.``    ``if` `(num - arr[ind] >= 0)``    ``{``        ``findMaxValUtil(arr, n, num - arr[ind],``                       ``maxLimit, ind + 1, ans);``    ``}` `    ``// Case 2 : Add current element to value so far``    ``// if result is less than or equal to maxLimit.``    ``if` `(num + arr[ind] <= maxLimit)``    ``{``        ``findMaxValUtil(arr, n, num + arr[ind],``                       ``maxLimit, ind + 1, ans);``    ``}``}` `// Function to find maximum possible``// value that can be obtained using``// array elements and given number.``int` `findMaxVal(``int` `arr[], ``int` `n,``               ``int` `num, ``int` `maxLimit)``{``    ``// variable to store maximum value``    ``// that can be obtained.``    ``int` `ans = 0;` `    ``// variable to store current index position.``    ``int` `ind = 0;` `    ``// call to utility function to find maximum``    ``// possible value that can be obtained.``    ``findMaxValUtil(arr, n, num, maxLimit, ind, ans);` `    ``return` `ans;``}` `// Driver code``int` `main()``{``    ``int` `num = 1;``    ``int` `arr[] = { 3, 10, 6, 4, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);``    ``int` `maxLimit = 15;` `    ``cout << findMaxVal(arr, n, num, maxLimit);``    ``return` `0;``}`

## Java

 `// Java code to find maximum``// value of number obtained by``// using array elements recursively.``import` `java.io.*;``import` `java.lang.*;`` ` `public` `class` `GFG {` `    ``// variable to store maximum value``    ``// that can be obtained.``    ``static` `int` `ans;``    ` `    ``// Utility function to find maximum``    ``// possible value``    ``static` `void` `findMaxValUtil(``int` `[]arr, ``int` `n, ``int` `num,``                              ``int` `maxLimit, ``int` `ind)``    ``{``         ` `        ``// If entire array is traversed, then compare``        ``// current value in num to overall maximum``        ``// obtained so far.``        ``if` `(ind == n) {``            ``ans = Math.max(ans, num);``            ``return``;``        ``}``     ` `        ``// Case 1: Subtract current element from value so``        ``// far if result is greater than or equal to zero.``        ``if` `(num - arr[ind] >= ``0``)``        ``{``            ``findMaxValUtil(arr, n, num - arr[ind],``                            ``maxLimit, ind + ``1``);``        ``}``     ` `        ``// Case 2 : Add current element to value so far``        ``// if result is less than or equal to maxLimit.``        ``if` `(num + arr[ind] <= maxLimit)``        ``{``            ``findMaxValUtil(arr, n, num + arr[ind],``                          ``maxLimit, ind + ``1``);``        ``}``    ``}``     ` `    ``// Function to find maximum possible``    ``// value that can be obtained using``    ``// array elements and given number.``    ``static` `int` `findMaxVal(``int` `[]arr, ``int` `n,``                             ``int` `num, ``int` `maxLimit)``    ``{``         ` `        ` `     ` `        ``// variable to store current index position.``        ``int` `ind = ``0``;``     ` `        ``// call to utility function to find maximum``        ``// possible value that can be obtained.``        ``findMaxValUtil(arr, n, num, maxLimit, ind);``     ` `        ``return` `ans;``    ``}``     ` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `num = ``1``;``        ``int` `[]arr = { ``3``, ``10``, ``6``, ``4``, ``5` `};``        ``int` `n = arr.length;``        ``int` `maxLimit = ``15``;``     ` `        ``System.out.print(findMaxVal(arr, n, num,``                                        ``maxLimit));``    ``}``}` `// This code is contributed by Manish Shaw``// (manishshaw1)`

## Python3

 `# Python3 code to find maximum``# value of number obtained by``# using array elements recursively.` `# Utility def to find``# maximum possible value` `# variable to store maximum value``# that can be obtained.``ans ``=` `0``;``def` `findMaxValUtil(arr, n, num, maxLimit, ind):``    ``global` `ans``    ` `    ``# If entire array is traversed,``    ``# then compare current value``    ``# in num to overall maximum``    ``# obtained so far.``    ``if` `(ind ``=``=` `n) :``        ``ans ``=` `max``(ans, num)``        ``return` `    ``# Case 1: Subtract current element``    ``# from value so far if result is``    ``# greater than or equal to zero.``    ``if` `(num ``-` `arr[ind] >``=` `0``) :``        ``findMaxValUtil(arr, n, num ``-` `arr[ind],``                            ``maxLimit, ind ``+` `1``)` `    ``# Case 2 : Add current element to``    ``# value so far if result is less``    ``# than or equal to maxLimit.``    ``if` `(num ``+` `arr[ind] <``=` `maxLimit) :``        ``findMaxValUtil(arr, n, num ``+` `arr[ind],``                            ``maxLimit, ind ``+` `1``)` `# def to find maximum possible``# value that can be obtained using``# array elements and given number.``def` `findMaxVal(arr, n, num, maxLimit) :``    ``global` `ans``    ``# variable to store``    ``# current index position.``    ``ind ``=` `0` `    ``# call to utility def to``    ``# find maximum possible value``    ``# that can be obtained.``    ``findMaxValUtil(arr, n, num, maxLimit, ind)``    ``return` `ans`  `# Driver code``num ``=` `1``arr ``=` `[``3``, ``10``, ``6``, ``4``, ``5``]``n ``=` `len``(arr)``maxLimit ``=` `15` `print` `(findMaxVal(arr, n, num, maxLimit))` `# This code is contributed by Manish Shaw``# (manishshaw1)`

## C#

 `// C# code to find maximum``// value of number obtained by``// using array elements recursively.``using` `System;``using` `System.Collections.Generic;` `class` `GFG {``    ` `    ``// Utility function to find maximum``    ``// possible value``    ``static` `void` `findMaxValUtil(``int` `[]arr, ``int` `n, ``int` `num,``                      ``int` `maxLimit, ``int` `ind, ``ref` `int` `ans)``    ``{``        ` `        ``// If entire array is traversed, then compare``        ``// current value in num to overall maximum``        ``// obtained so far.``        ``if` `(ind == n) {``            ``ans = Math.Max(ans, num);``            ``return``;``        ``}``    ` `        ``// Case 1: Subtract current element from value so``        ``// far if result is greater than or equal to zero.``        ``if` `(num - arr[ind] >= 0)``        ``{``            ``findMaxValUtil(arr, n, num - arr[ind],``                            ``maxLimit, ind + 1, ``ref` `ans);``        ``}``    ` `        ``// Case 2 : Add current element to value so far``        ``// if result is less than or equal to maxLimit.``        ``if` `(num + arr[ind] <= maxLimit)``        ``{``            ``findMaxValUtil(arr, n, num + arr[ind],``                          ``maxLimit, ind + 1, ``ref` `ans);``        ``}``    ``}``    ` `    ``// Function to find maximum possible``    ``// value that can be obtained using``    ``// array elements and given number.``    ``static` `int` `findMaxVal(``int` `[]arr, ``int` `n,``                             ``int` `num, ``int` `maxLimit)``    ``{``        ` `        ``// variable to store maximum value``        ``// that can be obtained.``        ``int` `ans = 0;``    ` `        ``// variable to store current index position.``        ``int` `ind = 0;``    ` `        ``// call to utility function to find maximum``        ``// possible value that can be obtained.``        ``findMaxValUtil(arr, n, num, maxLimit, ind,``                                           ``ref` `ans);``    ` `        ``return` `ans;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `num = 1;``        ``int` `[]arr = { 3, 10, 6, 4, 5 };``        ``int` `n = arr.Length;``        ``int` `maxLimit = 15;``    ` `        ``Console.Write(findMaxVal(arr, n, num,``                                        ``maxLimit));``    ``}``}` `// This code is contributed by Manish Shaw``// (manishshaw1)`

## PHP

 `= 0)``    ``{``        ``findMaxValUtil(``\$arr``, ``\$n``,``                       ``\$num` `- ``\$arr``[``\$ind``],``                       ``\$maxLimit``, ``\$ind` `+ 1,``                       ``\$ans``);``    ``}` `    ``// Case 2 : Add current element to``    ``// value so far if result is less``    ``// than or equal to maxLimit.``    ``if` `(``\$num` `+ ``\$arr``[``\$ind``] <= ``\$maxLimit``)``    ``{``        ``findMaxValUtil(``\$arr``, ``\$n``,``                       ``\$num` `+ ``\$arr``[``\$ind``],``                       ``\$maxLimit``, ``\$ind` `+ 1,``                       ``\$ans``);``    ``}``}` `// Function to find maximum possible``// value that can be obtained using``// array elements and given number.``function` `findMaxVal(``\$arr``, ``\$n``,``                    ``\$num``, ``\$maxLimit``)``{``    ``// variable to store maximum value``    ``// that can be obtained.``    ``\$ans` `= 0;` `    ``// variable to store``    ``// current index position.``    ``\$ind` `= 0;` `    ``// call to utility function to``    ``// find maximum possible value``    ``// that can be obtained.``    ``findMaxValUtil(``\$arr``, ``\$n``, ``\$num``,``                   ``\$maxLimit``, ``\$ind``, ``\$ans``);` `    ``return` `\$ans``;``}` `// Driver code``\$num` `= 1;``\$arr` `= ``array``(3, 10, 6, 4, 5);``\$n` `= ``count``(``\$arr``);``\$maxLimit` `= 15;` `echo` `(findMaxVal(``\$arr``, ``\$n``, ``\$num``, ``\$maxLimit``));` `//This code is contributed by Manish Shaw``//(manishshaw1)``?>`

## Javascript

 ``
Output:

`9`

Time Complexity : O(2^n).

Note : For small values of n <= 20, this solution will work. But as array size increases, this will not be an optimal solution.

An efficient solution is to use Dynamic Programming. Observe that the value at every step is constrained between 0 and maxLimit and hence, the required maximum value will also lie in this range. At every index position, after arr[i] is added to or subtracted from result, the new value of result will also lie in this range. Lets try to build the solution backwards. Suppose the required maximum possible value is x, where 0 â‰¤ x â‰¤ maxLimit. This value x is obtained by either adding or subtracting arr[n-1] to/from the value obtained until index position n-2. The same reason can be given for value obtained at index position n-2 that it depends on value at index position n-3 and so on. The resulting recurrence relation can be given as :

```Check can x be obtained from arr[0..n-1]:
Check can x - arr[n-1] be obtained from arr[0..n-2]
|| Check can x + arr[n-1] be obtained from arr[0..n-2]```

A boolean DP table can be created in which dp[i][j] is 1 if value j can be obtained using arr[0..i] and 0 if not. For each index position, start from j = 0 and move to value maxLimit, and set dp[i][j] either 0 or 1 as described above. Find the maximum possible value that can be obtained at index position n-1 by finding maximum j when i = n-1 and dp[n-1][j] = 1.

## C++

 `// C++ program to find maximum value of``// number obtained by using array``// elements by using dynamic programming.``#include ``using` `namespace` `std;`` ` `// Function to find maximum possible``// value of number that can be``// obtained using array elements.``int` `findMaxVal(``int` `arr[], ``int` `n,``               ``int` `num, ``int` `maxLimit)``{``    ``// Variable to represent current index.``    ``int` `ind;``     ` `    ``// Variable to show value between``    ``//  0 and maxLimit.``    ``int` `val;``     ` `    ``// Table to store whether a value can``    ``// be obtained or not upto a certain index.``    ``// 1. dp[i][j] = 1 if value j can be``    ``//    obtained upto index i.``    ``// 2. dp[i][j] = 0 if value j cannot be``    ``//    obtained upto index i.``    ``int` `dp[n][maxLimit+1];``     ` `    ``for``(ind = 0; ind < n; ind++)``    ``{``        ``for``(val = 0; val <= maxLimit; val++)``        ``{``            ``// Check for index 0 if given value``            ``// val can be obtained by either adding``            ``// to or subtracting arr[0] from num.``            ``if``(ind == 0)``            ``{``                ``if``(num - arr[ind] == val ||``                    ``num + arr[ind] == val)``                ``{``                    ``dp[ind][val] = 1;``                ``}``                ``else``                ``{``                    ``dp[ind][val] = 0;``                ``}``            ``}``            ``else``            ``{``                ``// 1. If arr[ind] is added to``                ``// obtain given val then val-``                ``// arr[ind] should be obtainable``                ``// from index ind-1.``                ``// 2. If arr[ind] is subtracted to``                ``// obtain given val then val+arr[ind]``                ``// should be obtainable from index ind-1.``                ``// Check for both the conditions.``                ``if``(val - arr[ind] >= 0 &&``                   ``val + arr[ind] <= maxLimit)``                ``{``                    ``// If either of one condition is true,``                    ``// then val is obtainable at index ind.``                    ``dp[ind][val] = dp[ind-1][val-arr[ind]] ||``                                     ``dp[ind-1][val+arr[ind]];``                ``}``                ``else` `if``(val - arr[ind] >= 0)``                ``{``                    ``dp[ind][val] = dp[ind-1][val-arr[ind]];``                ``}``                ``else` `if``(val + arr[ind] <= maxLimit)``                ``{``                    ``dp[ind][val] = dp[ind-1][val+arr[ind]];``                ``}``                ``else``                ``{``                    ``dp[ind][val] = 0;``                ``}``            ``}``        ``}``    ``}``     ` `    ``// Find maximum value that is obtained``    ``// at index n-1.``    ``for``(val = maxLimit; val >= 0; val--)``    ``{``        ``if``(dp[n-1][val])``        ``{``            ``return` `val;``        ``}``    ``}``     ` `    ``// If no solution exists return -1.``    ``return` `-1;``}`` ` `// Driver Code``int` `main()``{``    ``int` `num = 1;``    ``int` `arr[] = {3, 10, 6, 4, 5};``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);``    ``int` `maxLimit = 15;``      ` `    ``cout << findMaxVal(arr, n, num, maxLimit);``    ``return` `0;``}`

## Java

 `// Java program to find maximum``// value of number obtained by``// using array elements by using``// dynamic programming.``import` `java.io.*;` `class` `GFG``{``    ` `    ``// Function to find maximum``    ``// possible value of number``    ``// that can be obtained``    ``// using array elements.``    ``static` `int` `findMaxVal(``int` `[]arr, ``int` `n,``                          ``int` `num, ``int` `maxLimit)``    ``{``        ` `        ``// Variable to represent``        ``// current index.``        ``int` `ind;``        ` `        ``// Variable to show value``        ``// between 0 and maxLimit.``        ``int` `val;``        ` `        ``// Table to store whether``        ``// a value can be obtained``        ``// or not upto a certain``        ``// index 1. dp[i,j] = 1 if``        ``// value j can be obtained``        ``// upto index i.``        ``// 2. dp[i,j] = 0 if value j``        ``// cannot be obtained upto index i.``        ``int` `[][]dp = ``new` `int``[n][maxLimit + ``1``];``        ` `        ``for``(ind = ``0``; ind < n; ind++)``        ``{``            ``for``(val = ``0``; val <= maxLimit; val++)``            ``{``                ``// Check for index 0 if given``                ``// value val can be obtained``                ``// by either adding to or``                ``// subtracting arr[0] from num.``                ``if``(ind == ``0``)``                ``{``                    ``if``(num - arr[ind] == val ||``                       ``num + arr[ind] == val)``                    ``{``                        ``dp[ind][val] = ``1``;``                    ``}``                    ``else``                    ``{``                        ``dp[ind][val] = ``0``;``                    ``}``                ``}``                ``else``                ``{``                    ``// 1. If arr[ind] is added``                    ``// to obtain given val then``                    ``// val- arr[ind] should be``                    ``// obtainable from index``                    ``// ind-1.``                    ``// 2. If arr[ind] is subtracted``                    ``// to obtain given val then``                    ``// val+arr[ind] should be``                    ``// obtainable from index ind-1.``                    ``// Check for both the conditions.``                    ``if``(val - arr[ind] >= ``0` `&&``                        ``val + arr[ind] <= maxLimit)``                    ``{``                        ` `                        ``// If either of one condition``                        ``// is true, then val is``                        ``// obtainable at index ind.``                        ``if``(dp[ind - ``1``][val - arr[ind]] == ``1``                        ``|| dp[ind - ``1``][val + arr[ind]] == ``1``)``                            ``dp[ind][val] = ``1``;``                        ` `                    ``}``                    ``else` `if``(val - arr[ind] >= ``0``)``                    ``{``                        ``dp[ind][val] = dp[ind - ``1``][val -``                                                   ``arr[ind]];``                    ``}``                    ``else` `if``(val + arr[ind] <= maxLimit)``                    ``{``                        ``dp[ind][val] = dp[ind - ``1``][val +``                                                   ``arr[ind]];``                    ``}``                    ``else``                    ``{``                        ``dp[ind][val] = ``0``;``                    ``}``                ``}``            ``}``        ``}``        ` `        ``// Find maximum value that``        ``// is obtained at index n-1.``        ``for``(val = maxLimit; val >= ``0``; val--)``        ``{``            ``if``(dp[n - ``1``][val] == ``1``)``            ``{``                ``return` `val;``            ``}``        ``}``        ` `        ``// If no solution``        ``// exists return -1.``        ``return` `-``1``;``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `num = ``1``;``        ``int` `[]arr = ``new` `int``[]{``3``, ``10``, ``6``, ``4``, ``5``};``        ``int` `n = arr.length;``        ``int` `maxLimit = ``15``;``            ` `        ``System.out.print(findMaxVal(arr, n,``                                    ``num, maxLimit));``    ``}``}` `// This code is contributed``// by Manish Shaw(manishshaw1)`

## Python3

 `# Python3 program to find maximum``# value of number obtained by``# using array elements by using``# dynamic programming.`  `# Function to find maximum``# possible value of number``# that can be obtained``# using array elements.``def` `findMaxVal(arr, n, num, maxLimit):` `    ``# Variable to represent``    ``# current index.``    ``ind ``=` `-``1``;` `    ``# Variable to show value``    ``# between 0 and maxLimit.``    ``val ``=` `-``1``;` `    ``# Table to store whether``    ``# a value can be obtained``    ``# or not upto a certain``    ``# index 1. dp[i,j] = 1 if``    ``# value j can be obtained``    ``# upto index i.``    ``# 2. dp[i,j] = 0 if value j``    ``# cannot be obtained upto index i.``    ``dp ``=` `[[``0` `for` `i ``in` `range``(maxLimit ``+` `1``)] ``for` `j ``in` `range``(n)];` `    ``for` `ind ``in` `range``(n):``        ``for` `val ``in` `range``(maxLimit ``+` `1``):` `            ``# Check for index 0 if given``            ``# value val can be obtained``            ``# by either adding to or``            ``# subtracting arr[0] from num.``            ``if` `(ind ``=``=` `0``):``                ``if` `(num ``-` `arr[ind] ``=``=` `val ``or` `num ``+` `arr[ind] ``=``=` `val):``                    ``dp[ind][val] ``=` `1``;``                ``else``:``                    ``dp[ind][val] ``=` `0``;` `            ``else``:``                ` `                ``# 1. If arr[ind] is added``                ``# to obtain given val then``                ``# val- arr[ind] should be``                ``# obtainable from index``                ``# ind-1.``                ``# 2. If arr[ind] is subtracted``                ``# to obtain given val then``                ``# val+arr[ind] should be``                ``# obtainable from index ind-1.``                ``# Check for both the conditions.``                ``if` `(val ``-` `arr[ind] >``=` `0` `and` `val ``+` `arr[ind] <``=` `maxLimit):` `                    ``# If either of one condition``                    ``# is True, then val is``                    ``# obtainable at index ind.``                    ``if` `(dp[ind ``-` `1``][val ``-` `arr[ind]] ``=``=` `1` `or``                        ``dp[ind ``-` `1``][val ``+` `arr[ind]] ``=``=` `1``):``                        ``dp[ind][val] ``=` `1``;` `                ``elif` `(val ``-` `arr[ind] >``=` `0``):``                    ``dp[ind][val] ``=` `dp[ind ``-` `1``][val ``-` `arr[ind]];``                ``elif` `(val ``+` `arr[ind] <``=` `maxLimit):``                    ``dp[ind][val] ``=` `dp[ind ``-` `1``][val ``+` `arr[ind]];``                ``else``:``                    ``dp[ind][val] ``=` `0``;` `    ``# Find maximum value that``    ``# is obtained at index n-1.``    ``for` `val ``in` `range``(maxLimit, ``-``1``, ``-``1``):``        ``if` `(dp[n ``-` `1``][val] ``=``=` `1``):``            ``return` `val;` `    ``# If no solution``    ``# exists return -1.``    ``return` `-``1``;` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``num ``=` `1``;``    ``arr ``=` `[``3``, ``10``, ``6``, ``4``, ``5``];``    ``n ``=` `len``(arr);``    ``maxLimit ``=` `15``;` `    ``print``(findMaxVal(arr, n, num, maxLimit));` `# This code is contributed by 29AjayKumar`

## C#

 `// C# program to find maximum value of``// number obtained by using array``// elements by using dynamic programming.``using` `System;` `class` `GFG {``    ` `    ``// Function to find maximum possible``    ``// value of number that can be``    ``// obtained using array elements.``    ``static` `int` `findMaxVal(``int` `[]arr, ``int` `n,``                    ``int` `num, ``int` `maxLimit)``    ``{``        ` `        ``// Variable to represent current index.``        ``int` `ind;``        ` `        ``// Variable to show value between``        ``// 0 and maxLimit.``        ``int` `val;``        ` `        ``// Table to store whether a value can``        ``// be obtained or not upto a certain``        ``// index 1. dp[i,j] = 1 if value j``        ``// can be obtained upto index i.``        ``// 2. dp[i,j] = 0 if value j cannot be``        ``// obtained upto index i.``        ``int` `[,]dp = ``new` `int``[n,maxLimit+1];``        ` `        ``for``(ind = 0; ind < n; ind++)``        ``{``            ``for``(val = 0; val <= maxLimit; val++)``            ``{``                ``// Check for index 0 if given``                ``// value val can be obtained``                ``// by either adding to or``                ``// subtracting arr[0] from num.``                ``if``(ind == 0)``                ``{``                    ``if``(num - arr[ind] == val ||``                        ``num + arr[ind] == val)``                    ``{``                        ``dp[ind,val] = 1;``                    ``}``                    ``else``                    ``{``                        ``dp[ind,val] = 0;``                    ``}``                ``}``                ``else``                ``{``                    ``// 1. If arr[ind] is added``                    ``// to obtain given val then``                    ``// val- arr[ind] should be``                    ``// obtainable from index``                    ``// ind-1.``                    ``// 2. If arr[ind] is subtracted``                    ``// to obtain given val then``                    ``// val+arr[ind] should be``                    ``// obtainable from index ind-1.``                    ``// Check for both the conditions.``                    ``if``(val - arr[ind] >= 0 &&``                         ``val + arr[ind] <= maxLimit)``                    ``{``                        ` `                        ``// If either of one condition``                        ``// is true, then val is``                        ``// obtainable at index ind.``                        ``if``(dp[ind-1,val-arr[ind]] == 1``                        ``|| dp[ind-1,val+arr[ind]] == 1)``                            ``dp[ind,val] = 1;``                        ` `                    ``}``                    ``else` `if``(val - arr[ind] >= 0)``                    ``{``                        ``dp[ind,val] = dp[ind-1,val-arr[ind]];``                    ``}``                    ``else` `if``(val + arr[ind] <= maxLimit)``                    ``{``                        ``dp[ind,val] = dp[ind-1,val+arr[ind]];``                    ``}``                    ``else``                    ``{``                        ``dp[ind,val] = 0;``                    ``}``                ``}``            ``}``        ``}``        ` `        ``// Find maximum value that is obtained``        ``// at index n-1.``        ``for``(val = maxLimit; val >= 0; val--)``        ``{``            ``if``(dp[n-1,val] == 1)``            ``{``                ``return` `val;``            ``}``        ``}``        ` `        ``// If no solution exists return -1.``        ``return` `-1;``    ``}``    ` `    ``// Driver Code``    ``static` `void` `Main()``    ``{``        ``int` `num = 1;``        ``int` `[]arr = ``new` `int``[]{3, 10, 6, 4, 5};``        ``int` `n = arr.Length;``        ``int` `maxLimit = 15;``            ` `        ``Console.Write(``             ``findMaxVal(arr, n, num, maxLimit));``    ``}``}` `// This code is contributed by Manish Shaw``// (manishshaw1)`

## PHP

 `= 0 &&``                   ``\$val` `+ ``\$arr``[``\$ind``] <= ``\$maxLimit``)``                ``{``                    ``// If either of one condition is true,``                    ``// then val is obtainable at index ind.``                    ``\$dp``[``\$ind``][``\$val``] = ``\$dp``[``\$ind` `- 1][``\$val` `- ``\$arr``[``\$ind``]] ||``                                      ``\$dp``[``\$ind` `- 1][``\$val` `+ ``\$arr``[``\$ind``]];``                ``}``                ``else` `if``(``\$val` `- ``\$arr``[``\$ind``] >= 0)``                ``{``                    ``\$dp``[``\$ind``][``\$val``] = ``\$dp``[``\$ind` `- 1][``\$val` `- ``\$arr``[``\$ind``]];``                ``}``                ``else` `if``(``\$val` `+ ``\$arr``[``\$ind``] <= ``\$maxLimit``)``                ``{``                    ``\$dp``[``\$ind``][``\$val``] = ``\$dp``[``\$ind` `- 1][``\$val` `+ ``\$arr``[``\$ind``]];``                ``}``                ``else``                ``{``                    ``\$dp``[``\$ind``][``\$val``] = 0;``                ``}``            ``}``        ``}``    ``}``    ` `    ``// Find maximum value that is obtained``    ``// at index n-1.``    ``for``(``\$val` `= ``\$maxLimit``; ``\$val` `>= 0; ``\$val``--)``    ``{``        ``if``(``\$dp``[``\$n` `- 1][``\$val``])``        ``{``            ``return` `\$val``;``        ``}``    ``}``    ` `    ``// If no solution exists return -1.``    ``return` `-1;``}` `// Driver Code``\$num` `= 1;``\$arr` `= ``array``(3, 10, 6, 4, 5);``\$n` `= sizeof(``\$arr``);``\$maxLimit` `= 15;``    ` `echo` `findMaxVal(``\$arr``, ``\$n``, ``\$num``, ``\$maxLimit``);` `// This code is contributed by ajit.``?>`

## Javascript

 ``
Output:
`9`

Time Complexity : O(n*maxLimit), where n is the size of array and maxLimit is the given max value.
Auxiliary Space : O(n*maxLimit), n is the size of array and maxLimit is the given max value.
Optimization : The space required can be reduced to O(2*maxLimit). Note that at every index position, we are only using values from previous row. So we can create a table with two rows, in which one of the rows store result for previous iteration and other for the current iteration.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up