Given a number N and a prime number P, the task is to find the sum of the largest divisors of each number in the range [1, N], which is not divisible by P.
Examples:
Input: N = 8, P = 2
Output: 22
Explanation: Numbers are in the range [1, 8].
Number Largest Divisor not divisible by P = 2
1 1
2 1
3 3
4 1
5 5
6 3
7 7
8 1
Sum of all divisors with given constraint = 22.
Input: N = 10, P = 5
Output: 43
Explanation: Numbers are in the range [1, 8].
Number Largest Divisor not divisible by P = 5
1 1
2 2
3 3
4 4
5 1
6 6
7 7
8 8
9 9
10 2
Sum of all divisors with given constraint = 43
Naive Approach: The naive idea is to find the divisors for each number in the range [1, N] and find the largest divisors which is not divisible by P and those numbers. Print the sum of all those largest divisors.
Time Complexity: O(N3/2)
Auxiliary Space: O(1)
Efficient Approach: The idea is to observe that the largest divisor of a number N not divisible by P would be N itself if N is not divisible by P. Else the required divisor will be the same as that of N/P. Below are the steps:
- If N is not divisible by P, then the largest divisor will be N, add this to the final sum.
- If N is divisible by P, the required divisor will be the same as that of N/P.
- So, find the sum of all numbers which are not divisible by P and add to them divisors of those which are divisible by P separately.
- The total sum would be N*(N + 1)/2. Subtract the sum of those which are divisible by P and add their corresponding value by recursively calling the function to find the sum for N/P.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int func( int N, int P)
{
int sumUptoN = (N * (N + 1) / 2);
int sumOfMultiplesOfP;
if (N < P) {
return sumUptoN;
}
else if ((N / P) == 1) {
return sumUptoN - P + 1;
}
sumOfMultiplesOfP
= ((N / P) * (2 * P + (N / P - 1) * P)) / 2;
return (sumUptoN
+ func(N / P, P)
- sumOfMultiplesOfP);
}
int main()
{
int N = 10, P = 5;
cout << func(N, P) << "\n" ;
return 0;
}
|
Java
import java.io.*;
public class GFG{
static int func( int N, int P)
{
int sumUptoN = (N * (N + 1 ) / 2 );
int sumOfMultiplesOfP;
if (N < P)
{
return sumUptoN;
}
else if ((N / P) == 1 )
{
return sumUptoN - P + 1 ;
}
sumOfMultiplesOfP = ((N / P) * ( 2 * P +
(N / P - 1 ) * P)) / 2 ;
return (sumUptoN + func(N / P, P) -
sumOfMultiplesOfP);
}
public static void main(String[] args)
{
int N = 10 , P = 5 ;
System.out.println(func(N, P));
}
}
|
Python3
def func(N, P):
sumUptoN = (N * (N + 1 ) / 2 );
sumOfMultiplesOfP = 0 ;
if (N < P):
return sumUptoN;
elif ((N / P) = = 1 ):
return sumUptoN - P + 1 ;
sumOfMultiplesOfP = (((N / P) *
( 2 * P +
(N / P - 1 ) *
P)) / 2 );
return (sumUptoN +
func(N / P, P) -
sumOfMultiplesOfP);
if __name__ = = '__main__' :
N = 10 ;
P = 5 ;
print (func(N, P));
|
C#
using System;
class GFG{
static int func( int N, int P)
{
int sumUptoN = (N * (N + 1) / 2);
int sumOfMultiplesOfP;
if (N < P)
{
return sumUptoN;
}
else if ((N / P) == 1)
{
return sumUptoN - P + 1;
}
sumOfMultiplesOfP = ((N / P) * (2 * P +
(N / P - 1) * P)) / 2;
return (sumUptoN + func(N / P, P) -
sumOfMultiplesOfP);
}
public static void Main(String[] args)
{
int N = 10, P = 5;
Console.WriteLine(func(N, P));
}
}
|
Javascript
<script>
function func(N, P)
{
let sumUptoN = (N * (N + 1) / 2);
let sumOfMultiplesOfP;
if (N < P)
{
return sumUptoN;
}
else if ((N / P) == 1)
{
return sumUptoN - P + 1;
}
sumOfMultiplesOfP = ((N / P) * (2 * P +
(N / P - 1) * P)) / 2;
return (sumUptoN + func(N / P, P) -
sumOfMultiplesOfP);
}
let N = 10, P = 5;
document.write(func(N, P));
</script>
|
Time Complexity: O(logPN)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Apr, 2023
Like Article
Save Article