Skip to content
Related Articles

Related Articles

Maximise difference between largest and smallest in Array by shifting X value in pairs after at most K operations

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 11 Feb, 2022

Given an array arr[] of size N and a positive integer K, the task is to maximise difference between the largest element and the smallest element in the array by performing at most K operations, wherein each operation:

  • select two integers arr[i] and arr[j] from the array and 
  • update arr[i] to arr[i] – X and arr[j] to arr[j] + X, where X is any integer in range [0, min(arr[i], arr[j])].

Examples:

Input: arr[] = {3, 3, 2, 3, 3}, K = 1
Output: 6
Explanation: In the 1st operation select the integers (arr[1], arr[0]) and X as 3. Hence arr[1] = arr[1] – X = 3 – 3 = 0. Similarly, arr[0] = arr[0] + X = 3 + 3 = 6. Hence, arr[] = {6, 0, 2, 3, 3} and the diffecence between smallest and largest element is 6 which is the maximum possible.

Input: arr[] = {7, 4, 8, 11, 2, 23, 67, 22, 5, 29, 6, 4, 56}, N = 13, X = 5
Output: 208

 

Approach: The given problem can be solved by using a greedy approach. The idea is to maximize the value of the largest element of the array. It can also be observed that the smallest element that can be achieved in the array is 0. Below are the steps to follow:

  • Sort the given array arr[] in descending order.
  • Iterate through the array in the range [1, N) and perform the given operation on (arr[i], arr[0]) for X = arr[i].
  • After K operations have been performed, arr[0] will be the required answer, except for the case where K =0.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum difference
// between the largest and smallest
// element of arr[] after K operations
int maxDifference(int arr[], int N, int K)
{
    // Sort A in descending order
    sort(arr, arr + N, greater<int>());
 
    // Case where no operation
    // is to be performed
    if (K == 0) {
        return arr[0] - arr[N - 1];
    }
 
    // Loop to iterate arr[]
    for (int i = 1; i < N && K != 0; ++i) {
 
        // Update arr[0]
        // and arr[i]
        arr[0] += arr[i];
        arr[i] = 0;
 
        // Decrement K
        K--;
    }
 
    // Return Answer
    return arr[0];
}
 
// Driver Code
int main()
{
 
    int arr[] = { 3, 3, 2, 3, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 1;
 
    cout << maxDifference(arr, N, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to find maximum difference
  // between the largest and smallest
  // element of arr[] after K operations
  static int maxDifference(Integer[] arr, int N, int K)
  {
     
    // Sort A in descending order
    Arrays.sort(arr, Collections.reverseOrder());
 
    // Case where no operation
    // is to be performed
    if (K == 0) {
      return arr[0] - arr[N - 1];
    }
 
    // Loop to iterate arr[]
    for (int i = 1; i < N && K != 0; ++i) {
 
      // Update arr[0]
      // and arr[i]
      arr[0] += arr[i];
      arr[i] = 0;
 
      // Decrement K
      K--;
    }
 
    // Return Answer
    return arr[0];
  }
 
  // Driver Code
  public static void main (String[] args) {
    Integer[] arr = { 3, 3, 2, 3, 3 };
    int N = arr.length;
    int K = 1;
 
    System.out.print(maxDifference(arr, N, K));
  }
}
 
// This code is contributed by hrithikgarg03188.

Python3




# Python program for the above approach
 
# Function to find maximum difference
# between the largest and smallest
# element of arr[] after K operations
def maxDifference(arr, N, K):
 
    # Sort A in descending order
    arr.sort(reverse = True)
 
    # Case where no operation
    # is to be performed
    if (K == 0):
        return arr[0] - arr[N - 1]
 
    # Loop to iterate arr[]
    for i in range(1, N):
 
        # Update arr[0]
        # and arr[i]
        if(K != 0):
            arr[0] = arr[0] + arr[i]
            arr[i] = 0
 
            # Decrement K
            K = K - 1
 
    # Return Answer
    return arr[0]
 
# Driver Code
arr = [3, 3, 2, 3, 3]
N = len(arr)
K = 1
 
print(maxDifference(arr, N, K))
 
# This code is contributed by Taranpreet

C#




// C# program to implement
// the above approach
using System;
 
class GFG
{
 
 // Function to find maximum difference
  // between the largest and smallest
  // element of arr[] after K operations
  static int maxDifference(int[] arr, int N, int K)
  {
     
    // Sort A in descending order
    Array.Sort(arr);
    Array.Reverse(arr);
     
    // Case where no operation
    // is to be performed
    if (K == 0) {
      return arr[0] - arr[N - 1];
    }
     
    // Loop to iterate arr[]
    for (int i = 1; i < N && K != 0; ++i) {
 
      // Update arr[0]
      // and arr[i]
      arr[0] += arr[i];
      arr[i] = 0;
 
      // Decrement K
      K--;
    }
 
    // Return Answer
    return arr[0];
  }
 
// Driver Code
public static void Main()
{
    int[] arr = { 3, 3, 2, 3, 3 };
    int n = arr.Length;
    int k = 1;
 
    Console.Write(maxDifference(arr, n, k));
}
}
 
// This code is contributed by sanjoy_62.

Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find maximum difference
       // between the largest and smallest
       // element of arr[] after K operations
       function maxDifference(arr, N, K)
       {
        
           // Sort A in descending order
           arr.sort(function (a, b) { return b - a })
 
           // Case where no operation
           // is to be performed
           if (K == 0) {
               return arr[0] - arr[N - 1];
           }
 
           // Loop to iterate arr[]
           for (let i = 1; i < N && K != 0; ++i) {
 
               // Update arr[0]
               // and arr[i]
               arr[0] += arr[i];
               arr[i] = 0;
 
               // Decrement K
               K--;
           }
 
           // Return Answer
           return arr[0];
       }
 
       // Driver Code
       let arr = [3, 3, 2, 3, 3];
       let N = arr.length;
       let K = 1;
 
       document.write(maxDifference(arr, N, K));
 
      // This code is contributed by Potta Lokesh
   </script>

 
 

Output

6

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!